![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2069 and substitution for class variables df-sbc 3779. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3780. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2711 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 3779 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 223 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 [wsb 2068 ∈ wcel 2107 {cab 2710 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: sbsbc 3782 sbc8g 3786 sbc2or 3787 sbceq1a 3789 sbc5ALT 3807 sbcng 3828 sbcimg 3829 sbcan 3830 sbcor 3831 sbcbig 3832 sbcim1 3834 sbcal 3842 sbcex2 3843 sbcel1v 3849 sbctt 3854 sbcralt 3867 sbcreu 3871 rspsbc 3874 rspesbca 3876 sbcel12 4409 sbceqg 4410 csbif 4586 rexreusng 4684 sbcbr123 5203 opelopabsb 5531 csbopab 5556 csbopabgALT 5557 iota4 6525 csbiota 6537 csbriota 7381 onminex 7790 findes 7893 nn0ind-raph 12662 uzind4s 12892 nn0min 32026 sbcrexgOLD 41523 |
Copyright terms: Public domain | W3C validator |