| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2067 and substitution for class variables df-sbc 3740. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3741. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2709 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3740 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2066 ∈ wcel 2110 {cab 2708 [wsbc 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3740 |
| This theorem is referenced by: sbsbc 3743 sbc8g 3747 sbc2or 3748 sbceq1a 3750 sbc5ALT 3768 sbcng 3787 sbcimg 3788 sbcan 3789 sbcor 3790 sbcbig 3791 sbcim1 3793 sbcal 3799 sbcex2 3800 sbcel1v 3805 sbctt 3809 sbcralt 3821 sbcreu 3825 rspsbc 3828 rspesbca 3830 sbcel12 4359 sbceqg 4360 csbif 4531 rexreusng 4630 sbcbr123 5143 opelopabsb 5468 csbopab 5493 csbopabgALT 5494 iota4 6458 csbiota 6470 csbriota 7313 onminex 7730 findes 7825 nn0ind-raph 12565 uzind4s 12798 nn0min 32793 sbcrexgOLD 42797 |
| Copyright terms: Public domain | W3C validator |