| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2068 and substitution for class variables df-sbc 3739. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3740. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2712 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3739 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2113 {cab 2711 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3739 |
| This theorem is referenced by: sbsbc 3742 sbc8g 3746 sbc2or 3747 sbceq1a 3749 sbc5ALT 3767 sbcng 3786 sbcimg 3787 sbcan 3788 sbcor 3789 sbcbig 3790 sbcim1 3792 sbcal 3798 sbcex2 3799 sbcel1v 3804 sbctt 3808 sbcralt 3820 sbcreu 3824 rspsbc 3827 rspesbca 3829 sbcel12 4362 sbceqg 4363 csbif 4534 rexreusng 4633 sbcbr123 5149 opelopabsb 5475 csbopab 5500 csbopabgALT 5501 iota4 6470 csbiota 6482 csbriota 7327 onminex 7744 findes 7839 nn0ind-raph 12583 uzind4s 12816 nn0min 32814 sbcrexgOLD 42892 |
| Copyright terms: Public domain | W3C validator |