![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2045 and substitution for class variables df-sbc 3712. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3713. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2872 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2778 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 3712 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 225 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 314 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1525 [wsb 2044 ∈ wcel 2083 {cab 2777 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-clab 2778 df-cleq 2790 df-clel 2865 df-sbc 3712 |
This theorem is referenced by: sbsbc 3715 sbc8g 3719 sbc2or 3720 sbceq1a 3722 sbc5 3736 sbcng 3753 sbcimg 3754 sbcan 3755 sbcor 3756 sbcbig 3757 sbcal 3767 sbcex2 3768 sbcel1v 3773 sbcel1vOLD 3774 sbctt 3778 sbcralt 3789 sbcreu 3793 rspsbc 3796 rspesbca 3798 sbcel12 4286 sbceqg 4287 csbif 4442 rexreusng 4530 sbcbr123 5022 opelopabsb 5314 csbopab 5337 csbopabgALT 5338 iota4 6214 csbiota 6225 csbriota 6996 onminex 7385 findes 7475 nn0ind-raph 11936 uzind4s 12161 nn0min 30217 sbcrexgOLD 38888 |
Copyright terms: Public domain | W3C validator |