| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2066 and substitution for class variables df-sbc 3745. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3746. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2708 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3745 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbsbc 3748 sbc8g 3752 sbc2or 3753 sbceq1a 3755 sbc5ALT 3773 sbcng 3792 sbcimg 3793 sbcan 3794 sbcor 3795 sbcbig 3796 sbcim1 3798 sbcal 3804 sbcex2 3805 sbcel1v 3810 sbctt 3814 sbcralt 3826 sbcreu 3830 rspsbc 3833 rspesbca 3835 sbcel12 4364 sbceqg 4365 csbif 4536 rexreusng 4633 sbcbr123 5149 opelopabsb 5477 csbopab 5502 csbopabgALT 5503 iota4 6467 csbiota 6479 csbriota 7325 onminex 7742 findes 7840 nn0ind-raph 12594 uzind4s 12827 nn0min 32778 sbcrexgOLD 42758 |
| Copyright terms: Public domain | W3C validator |