![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2063 and substitution for class variables df-sbc 3792. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3793. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2713 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 3792 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2062 ∈ wcel 2106 {cab 2712 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: sbsbc 3795 sbc8g 3799 sbc2or 3800 sbceq1a 3802 sbc5ALT 3820 sbcng 3842 sbcimg 3843 sbcan 3844 sbcor 3845 sbcbig 3846 sbcim1 3848 sbcal 3855 sbcex2 3856 sbcel1v 3862 sbctt 3867 sbcralt 3881 sbcreu 3885 rspsbc 3888 rspesbca 3890 sbcel12 4417 sbceqg 4418 csbif 4588 rexreusng 4684 sbcbr123 5202 opelopabsb 5540 csbopab 5565 csbopabgALT 5566 iota4 6544 csbiota 6556 csbriota 7403 onminex 7822 findes 7923 nn0ind-raph 12716 uzind4s 12948 nn0min 32827 sbcrexgOLD 42773 |
Copyright terms: Public domain | W3C validator |