Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2069 and substitution for class variables df-sbc 3712. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3713. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2716 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 3712 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 223 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 312 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbsbc 3715 sbc8g 3719 sbc2or 3720 sbceq1a 3722 sbc5ALT 3740 sbcng 3761 sbcimg 3762 sbcan 3763 sbcor 3764 sbcbig 3765 sbcim1 3767 sbcal 3776 sbcex2 3777 sbcel1v 3783 sbctt 3788 sbcralt 3801 sbcreu 3805 rspsbc 3808 rspesbca 3810 sbcel12 4339 sbceqg 4340 csbif 4513 rexreusng 4612 sbcbr123 5124 opelopabsb 5436 csbopab 5461 csbopabgALT 5462 iota4 6399 csbiota 6411 csbriota 7228 onminex 7629 findes 7723 nn0ind-raph 12350 uzind4s 12577 nn0min 31036 sbcrexgOLD 40523 |
Copyright terms: Public domain | W3C validator |