| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2066 and substitution for class variables df-sbc 3754. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3755. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2708 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3754 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbsbc 3757 sbc8g 3761 sbc2or 3762 sbceq1a 3764 sbc5ALT 3782 sbcng 3801 sbcimg 3802 sbcan 3803 sbcor 3804 sbcbig 3805 sbcim1 3807 sbcal 3813 sbcex2 3814 sbcel1v 3819 sbctt 3823 sbcralt 3835 sbcreu 3839 rspsbc 3842 rspesbca 3844 sbcel12 4374 sbceqg 4375 csbif 4546 rexreusng 4643 sbcbr123 5161 opelopabsb 5490 csbopab 5515 csbopabgALT 5516 iota4 6492 csbiota 6504 csbriota 7359 onminex 7778 findes 7876 nn0ind-raph 12634 uzind4s 12867 nn0min 32745 sbcrexgOLD 42773 |
| Copyright terms: Public domain | W3C validator |