| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq2 | Structured version Visualization version GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2065 and substitution for class variables df-sbc 3766. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3767. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2714 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3766 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 313 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2713 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: sbsbc 3769 sbc8g 3773 sbc2or 3774 sbceq1a 3776 sbc5ALT 3794 sbcng 3813 sbcimg 3814 sbcan 3815 sbcor 3816 sbcbig 3817 sbcim1 3819 sbcal 3825 sbcex2 3826 sbcel1v 3831 sbctt 3835 sbcralt 3847 sbcreu 3851 rspsbc 3854 rspesbca 3856 sbcel12 4386 sbceqg 4387 csbif 4558 rexreusng 4655 sbcbr123 5173 opelopabsb 5505 csbopab 5530 csbopabgALT 5531 iota4 6512 csbiota 6524 csbriota 7377 onminex 7796 findes 7896 nn0ind-raph 12693 uzind4s 12924 nn0min 32799 sbcrexgOLD 42808 |
| Copyright terms: Public domain | W3C validator |