![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unab | Structured version Visualization version GIF version |
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unab | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbor 2473 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2763 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∨ 𝜓)) | |
3 | df-clab 2763 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2763 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | orbi12i 901 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 296 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)}) |
7 | 6 | uneqri 3977 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 836 = wceq 1601 [wsb 2011 ∈ wcel 2106 {cab 2762 ∪ cun 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-un 3796 |
This theorem is referenced by: unrab 4123 rabun2 4131 dfif6 4309 unopab 4964 dmun 5576 hashf1lem2 13554 vdwlem6 16094 vtxdun 26829 diophun 38279 |
Copyright terms: Public domain | W3C validator |