MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unab Structured version   Visualization version   GIF version

Theorem unab 4283
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}

Proof of Theorem unab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbor 2307 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
2 df-clab 2714 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
3 df-clab 2714 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 df-clab 2714 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
53, 4orbi12i 914 . . 3 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
61, 2, 53bitr4ri 304 . 2 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)})
76uneqri 4131 1 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  [wsb 2064  wcel 2108  {cab 2713  cun 3924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931
This theorem is referenced by:  unrab  4290  rabun2  4299  dmun  5890  hashf1lem2  14474  vdwlem6  17006  addsasslem1  27962  addsasslem2  27963  addsdilem1  28106  addsdilem2  28107  mulsasslem1  28118  mulsasslem2  28119  vtxdun  29461  satfvsuclem1  35381  satf0suclem  35397  fmlasuc0  35406  sticksstones22  42181  diophun  42796
  Copyright terms: Public domain W3C validator