Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unab | Structured version Visualization version GIF version |
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unab | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbor 2308 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∨ 𝜓)) | |
3 | df-clab 2718 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2718 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | orbi12i 912 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 304 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)}) |
7 | 6 | uneqri 4090 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1542 [wsb 2071 ∈ wcel 2110 {cab 2717 ∪ cun 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 |
This theorem is referenced by: unrab 4245 rabun2 4253 dmun 5818 hashf1lem2 14168 vdwlem6 16685 vtxdun 27846 satfvsuclem1 33317 satf0suclem 33333 fmlasuc0 33342 sticksstones22 40121 diophun 40592 |
Copyright terms: Public domain | W3C validator |