| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unab | Structured version Visualization version GIF version | ||
| Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unab | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbor 2307 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
| 2 | df-clab 2714 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∨ 𝜓)) | |
| 3 | df-clab 2714 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | df-clab 2714 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 5 | 3, 4 | orbi12i 914 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| 6 | 1, 2, 5 | 3bitr4ri 304 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)}) |
| 7 | 6 | uneqri 4131 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2713 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: unrab 4290 rabun2 4299 dmun 5890 hashf1lem2 14474 vdwlem6 17006 addsasslem1 27962 addsasslem2 27963 addsdilem1 28106 addsdilem2 28107 mulsasslem1 28118 mulsasslem2 28119 vtxdun 29461 satfvsuclem1 35381 satf0suclem 35397 fmlasuc0 35406 sticksstones22 42181 diophun 42796 |
| Copyright terms: Public domain | W3C validator |