| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sclnbgrisvtx | Structured version Visualization version GIF version | ||
| Description: Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
| dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| sclnbgrisvtx | ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsclnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfsclnbgr2.s | . . 3 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
| 3 | dfsclnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 2, 3 | sclnbgrel 47877 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ⊆ wss 3902 {cpr 4578 ‘cfv 6481 Vtxcvtx 28972 Edgcedg 29023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |