| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sclnbgrisvtx | Structured version Visualization version GIF version | ||
| Description: Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
| dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| sclnbgrisvtx | ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsclnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfsclnbgr2.s | . . 3 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
| 3 | dfsclnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 2, 3 | sclnbgrel 47827 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 ⊆ wss 3931 {cpr 4608 ‘cfv 6536 Vtxcvtx 28980 Edgcedg 29031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-rab 3421 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |