Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sclnbgrisvtx Structured version   Visualization version   GIF version

Theorem sclnbgrisvtx 47879
Description: Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
sclnbgrisvtx (𝑋𝑆𝑋𝑉)
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛   𝑒,𝑋,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝐺(𝑒,𝑛)

Proof of Theorem sclnbgrisvtx
StepHypRef Expression
1 dfsclnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
2 dfsclnbgr2.s . . 3 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
3 dfsclnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
41, 2, 3sclnbgrel 47877 . 2 (𝑋𝑆 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
54simplbi 497 1 (𝑋𝑆𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3902  {cpr 4578  cfv 6481  Vtxcvtx 28972  Edgcedg 29023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-un 3907  df-ss 3919  df-sn 4577  df-pr 4579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator