Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr5 Structured version   Visualization version   GIF version

Theorem dfclnbgr5 47834
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfclnbgr5 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆))
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛   𝑒,𝐺,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem dfclnbgr5
StepHypRef Expression
1 dfsclnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
2 dfsclnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
31, 2dfclnbgr2 47807 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
4 dfsclnbgr2.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
51, 4, 2dfsclnbgr2 47830 . . 3 (𝑁𝑉𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
65uneq2d 4119 . 2 (𝑁𝑉 → ({𝑁} ∪ 𝑆) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
73, 6eqtr4d 2767 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  cun 3901  wss 3903  {csn 4577  {cpr 4579  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  Edgcedg 28992   ClNeighbVtx cclnbgr 47802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-clnbgr 47803
This theorem is referenced by:  dfnbgrss  47836
  Copyright terms: Public domain W3C validator