![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr5 | Structured version Visualization version GIF version |
Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025.) |
Ref | Expression |
---|---|
dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
dfclnbgr5 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsclnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | dfsclnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | dfclnbgr2 47697 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
4 | dfsclnbgr2.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
5 | 1, 4, 2 | dfsclnbgr2 47718 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
6 | 5 | uneq2d 4191 | . 2 ⊢ (𝑁 ∈ 𝑉 → ({𝑁} ∪ 𝑆) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) |
7 | 3, 6 | eqtr4d 2783 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 Edgcedg 29082 ClNeighbVtx cclnbgr 47692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-clnbgr 47693 |
This theorem is referenced by: dfnbgrss 47724 |
Copyright terms: Public domain | W3C validator |