![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sclnbgrelself | Structured version Visualization version GIF version |
Description: A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.) |
Ref | Expression |
---|---|
dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
sclnbgrelself | ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsclnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | dfsclnbgr2.s | . . 3 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
3 | dfsclnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 1, 2, 3 | sclnbgrel 47450 | . 2 ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒)) |
5 | dfsn2 4636 | . . . . . . 7 ⊢ {𝑁} = {𝑁, 𝑁} | |
6 | 5 | eqcomi 2735 | . . . . . 6 ⊢ {𝑁, 𝑁} = {𝑁} |
7 | 6 | sseq1i 4007 | . . . . 5 ⊢ ({𝑁, 𝑁} ⊆ 𝑒 ↔ {𝑁} ⊆ 𝑒) |
8 | snssg 4782 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑒 ↔ {𝑁} ⊆ 𝑒)) | |
9 | 7, 8 | bitr4id 289 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({𝑁, 𝑁} ⊆ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
10 | 9 | rexbidv 3169 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
11 | 10 | pm5.32i 573 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒) ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
12 | 4, 11 | bitri 274 | 1 ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 ⊆ wss 3946 {csn 4623 {cpr 4625 ‘cfv 6546 Vtxcvtx 28929 Edgcedg 28980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rex 3061 df-rab 3420 df-v 3464 df-un 3951 df-ss 3963 df-sn 4624 df-pr 4626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |