![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sclnbgrelself | Structured version Visualization version GIF version |
Description: A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.) |
Ref | Expression |
---|---|
dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
sclnbgrelself | ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsclnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | dfsclnbgr2.s | . . 3 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
3 | dfsclnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 1, 2, 3 | sclnbgrel 47719 | . 2 ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒)) |
5 | dfsn2 4661 | . . . . . . 7 ⊢ {𝑁} = {𝑁, 𝑁} | |
6 | 5 | eqcomi 2749 | . . . . . 6 ⊢ {𝑁, 𝑁} = {𝑁} |
7 | 6 | sseq1i 4037 | . . . . 5 ⊢ ({𝑁, 𝑁} ⊆ 𝑒 ↔ {𝑁} ⊆ 𝑒) |
8 | snssg 4808 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑒 ↔ {𝑁} ⊆ 𝑒)) | |
9 | 7, 8 | bitr4id 290 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({𝑁, 𝑁} ⊆ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
10 | 9 | rexbidv 3185 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
11 | 10 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑁} ⊆ 𝑒) ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
12 | 4, 11 | bitri 275 | 1 ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 Vtxcvtx 29031 Edgcedg 29082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |