Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sclnbgrelself Structured version   Visualization version   GIF version

Theorem sclnbgrelself 47828
Description: A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
sclnbgrelself (𝑁𝑆 ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 𝑁𝑒))
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝐺(𝑒,𝑛)

Proof of Theorem sclnbgrelself
StepHypRef Expression
1 dfsclnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
2 dfsclnbgr2.s . . 3 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
3 dfsclnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
41, 2, 3sclnbgrel 47827 . 2 (𝑁𝑆 ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑁} ⊆ 𝑒))
5 dfsn2 4619 . . . . . . 7 {𝑁} = {𝑁, 𝑁}
65eqcomi 2745 . . . . . 6 {𝑁, 𝑁} = {𝑁}
76sseq1i 3992 . . . . 5 ({𝑁, 𝑁} ⊆ 𝑒 ↔ {𝑁} ⊆ 𝑒)
8 snssg 4764 . . . . 5 (𝑁𝑉 → (𝑁𝑒 ↔ {𝑁} ⊆ 𝑒))
97, 8bitr4id 290 . . . 4 (𝑁𝑉 → ({𝑁, 𝑁} ⊆ 𝑒𝑁𝑒))
109rexbidv 3165 . . 3 (𝑁𝑉 → (∃𝑒𝐸 {𝑁, 𝑁} ⊆ 𝑒 ↔ ∃𝑒𝐸 𝑁𝑒))
1110pm5.32i 574 . 2 ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑁} ⊆ 𝑒) ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 𝑁𝑒))
124, 11bitri 275 1 (𝑁𝑆 ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 𝑁𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  wss 3931  {csn 4606  {cpr 4608  cfv 6536  Vtxcvtx 28980  Edgcedg 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rex 3062  df-rab 3421  df-v 3466  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator