| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sclnbgrel | Structured version Visualization version GIF version | ||
| Description: Characterization of a member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfsclnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfsclnbgr2.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
| dfsclnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| sclnbgrel | ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsclnbgr2.s | . . 3 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
| 3 | preq2 4698 | . . . . 5 ⊢ (𝑛 = 𝑋 → {𝑁, 𝑛} = {𝑁, 𝑋}) | |
| 4 | 3 | sseq1d 3978 | . . . 4 ⊢ (𝑛 = 𝑋 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑋} ⊆ 𝑒)) |
| 5 | 4 | rexbidv 3157 | . . 3 ⊢ (𝑛 = 𝑋 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| 6 | 5 | elrab 3659 | . 2 ⊢ (𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| 7 | 2, 6 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ⊆ wss 3914 {cpr 4591 ‘cfv 6511 Vtxcvtx 28923 Edgcedg 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: sclnbgrelself 47848 sclnbgrisvtx 47849 |
| Copyright terms: Public domain | W3C validator |