Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sclnbgrel Structured version   Visualization version   GIF version

Theorem sclnbgrel 47847
Description: Characterization of a member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
sclnbgrel (𝑋𝑆 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛   𝑒,𝑋,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝐺(𝑒,𝑛)

Proof of Theorem sclnbgrel
StepHypRef Expression
1 dfsclnbgr2.s . . 3 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
21eleq2i 2820 . 2 (𝑋𝑆𝑋 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
3 preq2 4698 . . . . 5 (𝑛 = 𝑋 → {𝑁, 𝑛} = {𝑁, 𝑋})
43sseq1d 3978 . . . 4 (𝑛 = 𝑋 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑋} ⊆ 𝑒))
54rexbidv 3157 . . 3 (𝑛 = 𝑋 → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
65elrab 3659 . 2 (𝑋 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
72, 6bitri 275 1 (𝑋𝑆 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 {𝑁, 𝑋} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  wss 3914  {cpr 4591  cfv 6511  Vtxcvtx 28923  Edgcedg 28974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3406  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  sclnbgrelself  47848  sclnbgrisvtx  47849
  Copyright terms: Public domain W3C validator