Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 33049
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 β„²π‘˜π΄
esumcst.2 β„²π‘˜π΅
Assertion
Ref Expression
esumcst ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = ((β™―β€˜π΄) Β·e 𝐡))
Distinct variable group:   π‘˜,𝑉
Allowed substitution hints:   𝐴(π‘˜)   𝐡(π‘˜)

Proof of Theorem esumcst
Dummy variables π‘Ž 𝑙 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 β„²π‘˜π΄
21nfel1 2919 . . . 4 β„²π‘˜ 𝐴 ∈ 𝑉
3 esumcst.2 . . . . 5 β„²π‘˜π΅
43nfel1 2919 . . . 4 β„²π‘˜ 𝐡 ∈ (0[,]+∞)
52, 4nfan 1902 . . 3 β„²π‘˜(𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞))
6 simpl 483 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ 𝐴 ∈ 𝑉)
7 simplr 767 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ (0[,]+∞))
8 xrge0tmd 32913 . . . . . . 7 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopMnd
9 tmdmnd 23570 . . . . . . 7 ((ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopMnd β†’ (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ Mnd)
12 inss2 4228 . . . . . 6 (𝒫 𝐴 ∩ Fin) βŠ† Fin
13 simpr 485 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ π‘₯ ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sselid 3979 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ π‘₯ ∈ Fin)
15 simplr 767 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝐡 ∈ (0[,]+∞))
16 xrge0base 32173 . . . . . 6 (0[,]+∞) = (Baseβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))
17 eqid 2732 . . . . . 6 (.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞))) = (.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))
183, 16, 17gsumconstf 19797 . . . . 5 (((ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ Mnd ∧ π‘₯ ∈ Fin ∧ 𝐡 ∈ (0[,]+∞)) β†’ ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ π‘₯ ↦ 𝐡)) = ((β™―β€˜π‘₯)(.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))𝐡))
1911, 14, 15, 18syl3anc 1371 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ π‘₯ ↦ 𝐡)) = ((β™―β€˜π‘₯)(.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))𝐡))
20 hashcl 14312 . . . . . 6 (π‘₯ ∈ Fin β†’ (β™―β€˜π‘₯) ∈ β„•0)
2114, 20syl 17 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (β™―β€˜π‘₯) ∈ β„•0)
22 xrge0mulgnn0 32177 . . . . 5 (((β™―β€˜π‘₯) ∈ β„•0 ∧ 𝐡 ∈ (0[,]+∞)) β†’ ((β™―β€˜π‘₯)(.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
2321, 15, 22syl2anc 584 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ ((β™―β€˜π‘₯)(.gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
2419, 23eqtrd 2772 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ π‘₯ ↦ 𝐡)) = ((β™―β€˜π‘₯) Β·e 𝐡))
255, 1, 6, 7, 24esumval 33032 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = sup(ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)), ℝ*, < ))
26 nn0ssre 12472 . . . . . . . . . 10 β„•0 βŠ† ℝ
27 ressxr 11254 . . . . . . . . . 10 ℝ βŠ† ℝ*
2826, 27sstri 3990 . . . . . . . . 9 β„•0 βŠ† ℝ*
29 pnfxr 11264 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4810 . . . . . . . . . 10 (+∞ ∈ ℝ* β†’ {+∞} βŠ† ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} βŠ† ℝ*
3228, 31unssi 4184 . . . . . . . 8 (β„•0 βˆͺ {+∞}) βŠ† ℝ*
33 hashf 14294 . . . . . . . . 9 β™―:V⟢(β„•0 βˆͺ {+∞})
34 vex 3478 . . . . . . . . 9 π‘₯ ∈ V
35 ffvelcdm 7080 . . . . . . . . 9 ((β™―:V⟢(β„•0 βˆͺ {+∞}) ∧ π‘₯ ∈ V) β†’ (β™―β€˜π‘₯) ∈ (β„•0 βˆͺ {+∞}))
3633, 34, 35mp2an 690 . . . . . . . 8 (β™―β€˜π‘₯) ∈ (β„•0 βˆͺ {+∞})
3732, 36sselii 3978 . . . . . . 7 (β™―β€˜π‘₯) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (β™―β€˜π‘₯) ∈ ℝ*)
39 iccssxr 13403 . . . . . . . 8 (0[,]+∞) βŠ† ℝ*
40 simpr 485 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ 𝐡 ∈ (0[,]+∞))
4139, 40sselid 3979 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ 𝐡 ∈ ℝ*)
4241adantr 481 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝐡 ∈ ℝ*)
4338, 42xmulcld 13277 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ ((β™―β€˜π‘₯) Β·e 𝐡) ∈ ℝ*)
4443fmpttd 7111 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)):(𝒫 𝐴 ∩ Fin)βŸΆβ„*)
4544frnd 6722 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) βŠ† ℝ*)
46 hashxrcl 14313 . . . . 5 (𝐴 ∈ 𝑉 β†’ (β™―β€˜π΄) ∈ ℝ*)
4746adantr 481 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ (β™―β€˜π΄) ∈ ℝ*)
4847, 41xmulcld 13277 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ ((β™―β€˜π΄) Β·e 𝐡) ∈ ℝ*)
49 vex 3478 . . . . . . . 8 𝑦 ∈ V
50 eqid 2732 . . . . . . . . 9 (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) = (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))
5150elrnmpt 5953 . . . . . . . 8 (𝑦 ∈ V β†’ (𝑦 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡)))
5249, 51ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡))
5352biimpi 215 . . . . . 6 (𝑦 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡))
5447adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (β™―β€˜π΄) ∈ ℝ*)
55 0xr 11257 . . . . . . . . . . 11 0 ∈ ℝ*
5655a1i 11 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ 0 ∈ ℝ*)
5729a1i 11 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ +∞ ∈ ℝ*)
58 iccgelb 13376 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐡 ∈ (0[,]+∞)) β†’ 0 ≀ 𝐡)
5956, 57, 15, 58syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ 0 ≀ 𝐡)
6042, 59jca 512 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐡 ∈ ℝ* ∧ 0 ≀ 𝐡))
616adantr 481 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝐴 ∈ 𝑉)
62 inss1 4227 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) βŠ† 𝒫 𝐴
6362sseli 3977 . . . . . . . . . . 11 (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) β†’ π‘₯ ∈ 𝒫 𝐴)
64 elpwi 4608 . . . . . . . . . . 11 (π‘₯ ∈ 𝒫 𝐴 β†’ π‘₯ βŠ† 𝐴)
6513, 63, 643syl 18 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ π‘₯ βŠ† 𝐴)
66 ssdomg 8992 . . . . . . . . . 10 (𝐴 ∈ 𝑉 β†’ (π‘₯ βŠ† 𝐴 β†’ π‘₯ β‰Ό 𝐴))
6761, 65, 66sylc 65 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ π‘₯ β‰Ό 𝐴)
68 hashdomi 14336 . . . . . . . . 9 (π‘₯ β‰Ό 𝐴 β†’ (β™―β€˜π‘₯) ≀ (β™―β€˜π΄))
6967, 68syl 17 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ (β™―β€˜π‘₯) ≀ (β™―β€˜π΄))
70 xlemul1a 13263 . . . . . . . 8 ((((β™―β€˜π‘₯) ∈ ℝ* ∧ (β™―β€˜π΄) ∈ ℝ* ∧ (𝐡 ∈ ℝ* ∧ 0 ≀ 𝐡)) ∧ (β™―β€˜π‘₯) ≀ (β™―β€˜π΄)) β†’ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡))
7138, 54, 60, 69, 70syl31anc 1373 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ π‘₯ ∈ (𝒫 𝐴 ∩ Fin)) β†’ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡))
7271ralrimiva 3146 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ βˆ€π‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡))
73 r19.29r 3116 . . . . . 6 ((βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ βˆ€π‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)))
7453, 72, 73syl2anr 597 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)))
75 simpl 483 . . . . . . 7 ((𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)) β†’ 𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡))
76 simpr 485 . . . . . . 7 ((𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)) β†’ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡))
7775, 76eqbrtrd 5169 . . . . . 6 ((𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)) β†’ 𝑦 ≀ ((β™―β€˜π΄) Β·e 𝐡))
7877rexlimivw 3151 . . . . 5 (βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((β™―β€˜π‘₯) Β·e 𝐡) ∧ ((β™―β€˜π‘₯) Β·e 𝐡) ≀ ((β™―β€˜π΄) Β·e 𝐡)) β†’ 𝑦 ≀ ((β™―β€˜π΄) Β·e 𝐡))
7974, 78syl 17 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))) β†’ 𝑦 ≀ ((β™―β€˜π΄) Β·e 𝐡))
8079ralrimiva 3146 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ βˆ€π‘¦ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 ≀ ((β™―β€˜π΄) Β·e 𝐡))
81 pwidg 4621 . . . . . . . . . . 11 (𝐴 ∈ Fin β†’ 𝐴 ∈ 𝒫 𝐴)
8281ancri 550 . . . . . . . . . 10 (𝐴 ∈ Fin β†’ (𝐴 ∈ 𝒫 𝐴 ∧ 𝐴 ∈ Fin))
83 elin 3963 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴 ∧ 𝐴 ∈ Fin))
8482, 83sylibr 233 . . . . . . . . 9 (𝐴 ∈ Fin β†’ 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
85 eqid 2732 . . . . . . . . . . 11 ((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π΄) Β·e 𝐡)
86 fveq2 6888 . . . . . . . . . . . . 13 (π‘₯ = 𝐴 β†’ (β™―β€˜π‘₯) = (β™―β€˜π΄))
8786oveq1d 7420 . . . . . . . . . . . 12 (π‘₯ = 𝐴 β†’ ((β™―β€˜π‘₯) Β·e 𝐡) = ((β™―β€˜π΄) Β·e 𝐡))
8887rspceeqv 3632 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π΄) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
8985, 88mpan2 689 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
90 ovex 7438 . . . . . . . . . . 11 ((β™―β€˜π΄) Β·e 𝐡) ∈ V
9150elrnmpt 5953 . . . . . . . . . . 11 (((β™―β€˜π΄) Β·e 𝐡) ∈ V β†’ (((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡)))
9290, 91ax-mp 5 . . . . . . . . . 10 (((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
9389, 92sylibr 233 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) β†’ ((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
9484, 93syl 17 . . . . . . . 8 (𝐴 ∈ Fin β†’ ((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
9594adantl 482 . . . . . . 7 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ 𝐴 ∈ Fin) β†’ ((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
96 simplr 767 . . . . . . 7 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ 𝐴 ∈ Fin) β†’ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡))
97 breq2 5151 . . . . . . . 8 (𝑧 = ((β™―β€˜π΄) Β·e 𝐡) β†’ (𝑦 < 𝑧 ↔ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)))
9897rspcev 3612 . . . . . . 7 ((((β™―β€˜π΄) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
9995, 96, 98syl2anc 584 . . . . . 6 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ 𝐴 ∈ Fin) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
100 0elpw 5353 . . . . . . . . . . . 12 βˆ… ∈ 𝒫 𝐴
101 0fin 9167 . . . . . . . . . . . 12 βˆ… ∈ Fin
102 elin 3963 . . . . . . . . . . . 12 (βˆ… ∈ (𝒫 𝐴 ∩ Fin) ↔ (βˆ… ∈ 𝒫 𝐴 ∧ βˆ… ∈ Fin))
103100, 101, 102mpbir2an 709 . . . . . . . . . . 11 βˆ… ∈ (𝒫 𝐴 ∩ Fin)
104103a1i 11 . . . . . . . . . 10 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ βˆ… ∈ (𝒫 𝐴 ∩ Fin))
105 simpr 485 . . . . . . . . . . . 12 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ 𝐡 = 0)
106105oveq2d 7421 . . . . . . . . . . 11 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ ((β™―β€˜βˆ…) Β·e 𝐡) = ((β™―β€˜βˆ…) Β·e 0))
107 hash0 14323 . . . . . . . . . . . . 13 (β™―β€˜βˆ…) = 0
108107, 55eqeltri 2829 . . . . . . . . . . . 12 (β™―β€˜βˆ…) ∈ ℝ*
109 xmul01 13242 . . . . . . . . . . . 12 ((β™―β€˜βˆ…) ∈ ℝ* β†’ ((β™―β€˜βˆ…) Β·e 0) = 0)
110108, 109ax-mp 5 . . . . . . . . . . 11 ((β™―β€˜βˆ…) Β·e 0) = 0
111106, 110eqtr2di 2789 . . . . . . . . . 10 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ 0 = ((β™―β€˜βˆ…) Β·e 𝐡))
112 fveq2 6888 . . . . . . . . . . . 12 (π‘₯ = βˆ… β†’ (β™―β€˜π‘₯) = (β™―β€˜βˆ…))
113112oveq1d 7420 . . . . . . . . . . 11 (π‘₯ = βˆ… β†’ ((β™―β€˜π‘₯) Β·e 𝐡) = ((β™―β€˜βˆ…) Β·e 𝐡))
114113rspceeqv 3632 . . . . . . . . . 10 ((βˆ… ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((β™―β€˜βˆ…) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)0 = ((β™―β€˜π‘₯) Β·e 𝐡))
115104, 111, 114syl2anc 584 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)0 = ((β™―β€˜π‘₯) Β·e 𝐡))
116 ovex 7438 . . . . . . . . . 10 ((β™―β€˜π‘₯) Β·e 𝐡) ∈ V
11750, 116elrnmpti 5957 . . . . . . . . 9 (0 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)0 = ((β™―β€˜π‘₯) Β·e 𝐡))
118115, 117sylibr 233 . . . . . . . 8 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ 0 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
119 simpllr 774 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡))
120105oveq2d 7421 . . . . . . . . . 10 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ ((β™―β€˜π΄) Β·e 𝐡) = ((β™―β€˜π΄) Β·e 0))
12147ad4antr 730 . . . . . . . . . . 11 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ (β™―β€˜π΄) ∈ ℝ*)
122 xmul01 13242 . . . . . . . . . . 11 ((β™―β€˜π΄) ∈ ℝ* β†’ ((β™―β€˜π΄) Β·e 0) = 0)
123121, 122syl 17 . . . . . . . . . 10 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ ((β™―β€˜π΄) Β·e 0) = 0)
124120, 123eqtrd 2772 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ ((β™―β€˜π΄) Β·e 𝐡) = 0)
125119, 124breqtrd 5173 . . . . . . . 8 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ 𝑦 < 0)
126 breq2 5151 . . . . . . . . 9 (𝑧 = 0 β†’ (𝑦 < 𝑧 ↔ 𝑦 < 0))
127126rspcev 3612 . . . . . . . 8 ((0 ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ∧ 𝑦 < 0) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
128118, 125, 127syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = 0) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
129 simplr 767 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ π‘Ž ∈ 𝒫 𝐴)
130 simpr 485 . . . . . . . . . . . . . . . 16 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ (β™―β€˜π‘Ž) = 𝑛)
131 simp-4r 782 . . . . . . . . . . . . . . . 16 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝑛 ∈ β„•)
132130, 131eqeltrd 2833 . . . . . . . . . . . . . . 15 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ (β™―β€˜π‘Ž) ∈ β„•)
133 nnnn0 12475 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘Ž) ∈ β„• β†’ (β™―β€˜π‘Ž) ∈ β„•0)
134 vex 3478 . . . . . . . . . . . . . . . . 17 π‘Ž ∈ V
135 hashclb 14314 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ V β†’ (π‘Ž ∈ Fin ↔ (β™―β€˜π‘Ž) ∈ β„•0))
136134, 135ax-mp 5 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ Fin ↔ (β™―β€˜π‘Ž) ∈ β„•0)
137133, 136sylibr 233 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘Ž) ∈ β„• β†’ π‘Ž ∈ Fin)
138132, 137syl 17 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ π‘Ž ∈ Fin)
139129, 138elind 4193 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ π‘Ž ∈ (𝒫 𝐴 ∩ Fin))
140 eqidd 2733 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ ((β™―β€˜π‘Ž) Β·e 𝐡) = ((β™―β€˜π‘Ž) Β·e 𝐡))
141 fveq2 6888 . . . . . . . . . . . . . . 15 (π‘₯ = π‘Ž β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘Ž))
142141oveq1d 7420 . . . . . . . . . . . . . 14 (π‘₯ = π‘Ž β†’ ((β™―β€˜π‘₯) Β·e 𝐡) = ((β™―β€˜π‘Ž) Β·e 𝐡))
143142rspceeqv 3632 . . . . . . . . . . . . 13 ((π‘Ž ∈ (𝒫 𝐴 ∩ Fin) ∧ ((β™―β€˜π‘Ž) Β·e 𝐡) = ((β™―β€˜π‘Ž) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π‘Ž) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
144139, 140, 143syl2anc 584 . . . . . . . . . . . 12 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π‘Ž) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
14550, 116elrnmpti 5957 . . . . . . . . . . . 12 (((β™―β€˜π‘Ž) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)((β™―β€˜π‘Ž) Β·e 𝐡) = ((β™―β€˜π‘₯) Β·e 𝐡))
146144, 145sylibr 233 . . . . . . . . . . 11 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ ((β™―β€˜π‘Ž) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
147 simpllr 774 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ (𝑦 / 𝐡) < 𝑛)
148 simp-8r 790 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝑦 ∈ ℝ)
149131nnred 12223 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝑛 ∈ ℝ)
150 simp-5r 784 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝐡 ∈ ℝ+)
151148, 149, 150ltdivmul2d 13064 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ ((𝑦 / 𝐡) < 𝑛 ↔ 𝑦 < (𝑛 Β· 𝐡)))
152147, 151mpbid 231 . . . . . . . . . . . 12 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝑦 < (𝑛 Β· 𝐡))
153130oveq1d 7420 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ ((β™―β€˜π‘Ž) Β·e 𝐡) = (𝑛 Β·e 𝐡))
154150rpred 13012 . . . . . . . . . . . . . 14 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝐡 ∈ ℝ)
155 rexmul 13246 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝑛 Β·e 𝐡) = (𝑛 Β· 𝐡))
156149, 154, 155syl2anc 584 . . . . . . . . . . . . 13 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ (𝑛 Β·e 𝐡) = (𝑛 Β· 𝐡))
157153, 156eqtrd 2772 . . . . . . . . . . . 12 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ ((β™―β€˜π‘Ž) Β·e 𝐡) = (𝑛 Β· 𝐡))
158152, 157breqtrrd 5175 . . . . . . . . . . 11 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ 𝑦 < ((β™―β€˜π‘Ž) Β·e 𝐡))
159 breq2 5151 . . . . . . . . . . . 12 (𝑧 = ((β™―β€˜π‘Ž) Β·e 𝐡) β†’ (𝑦 < 𝑧 ↔ 𝑦 < ((β™―β€˜π‘Ž) Β·e 𝐡)))
160159rspcev 3612 . . . . . . . . . . 11 ((((β™―β€˜π‘Ž) Β·e 𝐡) ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ∧ 𝑦 < ((β™―β€˜π‘Ž) Β·e 𝐡)) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
161146, 158, 160syl2anc 584 . . . . . . . . . 10 ((((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) ∧ π‘Ž ∈ 𝒫 𝐴) ∧ (β™―β€˜π‘Ž) = 𝑛) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
162161rexlimdva2 3157 . . . . . . . . 9 ((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ (𝑦 / 𝐡) < 𝑛) β†’ (βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛 β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧))
163162impr 455 . . . . . . . 8 ((((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) ∧ 𝑛 ∈ β„•) ∧ ((𝑦 / 𝐡) < 𝑛 ∧ βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛)) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
164 simp-4r 782 . . . . . . . . . . 11 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ 𝑦 ∈ ℝ)
165 simpr 485 . . . . . . . . . . 11 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ 𝐡 ∈ ℝ+)
166164, 165rerpdivcld 13043 . . . . . . . . . 10 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ (𝑦 / 𝐡) ∈ ℝ)
167 arch 12465 . . . . . . . . . 10 ((𝑦 / 𝐡) ∈ ℝ β†’ βˆƒπ‘› ∈ β„• (𝑦 / 𝐡) < 𝑛)
168166, 167syl 17 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘› ∈ β„• (𝑦 / 𝐡) < 𝑛)
169 ishashinf 14420 . . . . . . . . . 10 (Β¬ 𝐴 ∈ Fin β†’ βˆ€π‘› ∈ β„• βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛)
170169ad2antlr 725 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ βˆ€π‘› ∈ β„• βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛)
171 r19.29r 3116 . . . . . . . . 9 ((βˆƒπ‘› ∈ β„• (𝑦 / 𝐡) < 𝑛 ∧ βˆ€π‘› ∈ β„• βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛) β†’ βˆƒπ‘› ∈ β„• ((𝑦 / 𝐡) < 𝑛 ∧ βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛))
172168, 170, 171syl2anc 584 . . . . . . . 8 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘› ∈ β„• ((𝑦 / 𝐡) < 𝑛 ∧ βˆƒπ‘Ž ∈ 𝒫 𝐴(β™―β€˜π‘Ž) = 𝑛))
173163, 172r19.29a 3162 . . . . . . 7 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
174 nfielex 9269 . . . . . . . . . . . 12 (Β¬ 𝐴 ∈ Fin β†’ βˆƒπ‘™ 𝑙 ∈ 𝐴)
175174adantr 481 . . . . . . . . . . 11 ((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) β†’ βˆƒπ‘™ 𝑙 ∈ 𝐴)
176 snelpwi 5442 . . . . . . . . . . . . . . 15 (𝑙 ∈ 𝐴 β†’ {𝑙} ∈ 𝒫 𝐴)
177 snfi 9040 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
178176, 177jctir 521 . . . . . . . . . . . . . 14 (𝑙 ∈ 𝐴 β†’ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
179 elin 3963 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
180178, 179sylibr 233 . . . . . . . . . . . . 13 (𝑙 ∈ 𝐴 β†’ {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
181180adantl 482 . . . . . . . . . . . 12 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
182 simplr 767 . . . . . . . . . . . . . 14 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ 𝐡 = +∞)
183182oveq2d 7421 . . . . . . . . . . . . 13 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ ((β™―β€˜{𝑙}) Β·e 𝐡) = ((β™―β€˜{𝑙}) Β·e +∞))
184 hashsng 14325 . . . . . . . . . . . . . . . 16 (𝑙 ∈ 𝐴 β†’ (β™―β€˜{𝑙}) = 1)
185 1re 11210 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
18627, 185sselii 3978 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
187184, 186eqeltrdi 2841 . . . . . . . . . . . . . . 15 (𝑙 ∈ 𝐴 β†’ (β™―β€˜{𝑙}) ∈ ℝ*)
188 0lt1 11732 . . . . . . . . . . . . . . . 16 0 < 1
189188, 184breqtrrid 5185 . . . . . . . . . . . . . . 15 (𝑙 ∈ 𝐴 β†’ 0 < (β™―β€˜{𝑙}))
190 xmulpnf1 13249 . . . . . . . . . . . . . . 15 (((β™―β€˜{𝑙}) ∈ ℝ* ∧ 0 < (β™―β€˜{𝑙})) β†’ ((β™―β€˜{𝑙}) Β·e +∞) = +∞)
191187, 189, 190syl2anc 584 . . . . . . . . . . . . . 14 (𝑙 ∈ 𝐴 β†’ ((β™―β€˜{𝑙}) Β·e +∞) = +∞)
192191adantl 482 . . . . . . . . . . . . 13 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ ((β™―β€˜{𝑙}) Β·e +∞) = +∞)
193183, 192eqtr2d 2773 . . . . . . . . . . . 12 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ +∞ = ((β™―β€˜{𝑙}) Β·e 𝐡))
194 fveq2 6888 . . . . . . . . . . . . . 14 (π‘₯ = {𝑙} β†’ (β™―β€˜π‘₯) = (β™―β€˜{𝑙}))
195194oveq1d 7420 . . . . . . . . . . . . 13 (π‘₯ = {𝑙} β†’ ((β™―β€˜π‘₯) Β·e 𝐡) = ((β™―β€˜{𝑙}) Β·e 𝐡))
196195rspceeqv 3632 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((β™―β€˜{𝑙}) Β·e 𝐡)) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((β™―β€˜π‘₯) Β·e 𝐡))
197181, 193, 196syl2anc 584 . . . . . . . . . . 11 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) ∧ 𝑙 ∈ 𝐴) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((β™―β€˜π‘₯) Β·e 𝐡))
198175, 197exlimddv 1938 . . . . . . . . . 10 ((Β¬ 𝐴 ∈ Fin ∧ 𝐡 = +∞) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((β™―β€˜π‘₯) Β·e 𝐡))
199198adantll 712 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = +∞) β†’ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((β™―β€˜π‘₯) Β·e 𝐡))
20050, 116elrnmpti 5957 . . . . . . . . 9 (+∞ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((β™―β€˜π‘₯) Β·e 𝐡))
201199, 200sylibr 233 . . . . . . . 8 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = +∞) β†’ +∞ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)))
202 simp-4r 782 . . . . . . . . 9 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = +∞) β†’ 𝑦 ∈ ℝ)
203 ltpnf 13096 . . . . . . . . 9 (𝑦 ∈ ℝ β†’ 𝑦 < +∞)
204202, 203syl 17 . . . . . . . 8 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = +∞) β†’ 𝑦 < +∞)
205 breq2 5151 . . . . . . . . 9 (𝑧 = +∞ β†’ (𝑦 < 𝑧 ↔ 𝑦 < +∞))
206205rspcev 3612 . . . . . . . 8 ((+∞ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) ∧ 𝑦 < +∞) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
207201, 204, 206syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) ∧ 𝐡 = +∞) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
208 simp-4r 782 . . . . . . . 8 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) β†’ 𝐡 ∈ (0[,]+∞))
209 elxrge02 32085 . . . . . . . 8 (𝐡 ∈ (0[,]+∞) ↔ (𝐡 = 0 ∨ 𝐡 ∈ ℝ+ ∨ 𝐡 = +∞))
210208, 209sylib 217 . . . . . . 7 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) β†’ (𝐡 = 0 ∨ 𝐡 ∈ ℝ+ ∨ 𝐡 = +∞))
211128, 173, 207, 210mpjao3dan 1431 . . . . . 6 (((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) ∧ Β¬ 𝐴 ∈ Fin) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
21299, 211pm2.61dan 811 . . . . 5 ((((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((β™―β€˜π΄) Β·e 𝐡)) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧)
213212ex 413 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) β†’ (𝑦 < ((β™―β€˜π΄) Β·e 𝐡) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧))
214213ralrimiva 3146 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ βˆ€π‘¦ ∈ ℝ (𝑦 < ((β™―β€˜π΄) Β·e 𝐡) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧))
215 supxr2 13289 . . 3 (((ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)) βŠ† ℝ* ∧ ((β™―β€˜π΄) Β·e 𝐡) ∈ ℝ*) ∧ (βˆ€π‘¦ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 ≀ ((β™―β€˜π΄) Β·e 𝐡) ∧ βˆ€π‘¦ ∈ ℝ (𝑦 < ((β™―β€˜π΄) Β·e 𝐡) β†’ βˆƒπ‘§ ∈ ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡))𝑦 < 𝑧))) β†’ sup(ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)), ℝ*, < ) = ((β™―β€˜π΄) Β·e 𝐡))
21645, 48, 80, 214, 215syl22anc 837 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ sup(ran (π‘₯ ∈ (𝒫 𝐴 ∩ Fin) ↦ ((β™―β€˜π‘₯) Β·e 𝐡)), ℝ*, < ) = ((β™―β€˜π΄) Β·e 𝐡))
21725, 216eqtrd 2772 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ (0[,]+∞)) β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = ((β™―β€˜π΄) Β·e 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ w3o 1086   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  β„²wnfc 2883  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   β‰Ό cdom 8933  Fincfn 8935  supcsup 9431  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111  +∞cpnf 11241  β„*cxr 11243   < clt 11244   ≀ cle 11245   / cdiv 11867  β„•cn 12208  β„•0cn0 12468  β„+crp 12970   Β·e cxmu 13087  [,]cicc 13323  β™―chash 14286   β†Ύs cress 17169   Ξ£g cgsu 17382  β„*𝑠cxrs 17442  Mndcmnd 18621  .gcmg 18944  TopMndctmd 23565  Ξ£*cesum 33013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-ordt 17443  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-ps 18515  df-tsr 18516  df-plusf 18556  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-abv 20417  df-lmod 20465  df-scaf 20466  df-sra 20777  df-rgmod 20778  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-tmd 23567  df-tgp 23568  df-tsms 23622  df-trg 23655  df-xms 23817  df-ms 23818  df-tms 23819  df-nm 24082  df-ngp 24083  df-nrg 24085  df-nlm 24086  df-ii 24384  df-cncf 24385  df-limc 25374  df-dv 25375  df-log 26056  df-esum 33014
This theorem is referenced by:  esumpinfval  33059  esumpinfsum  33063
  Copyright terms: Public domain W3C validator