Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 31211
 Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 𝑘𝐴
esumcst.2 𝑘𝐵
Assertion
Ref Expression
esumcst ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcst
Dummy variables 𝑎 𝑙 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 𝑘𝐴
21nfel1 2998 . . . 4 𝑘 𝐴𝑉
3 esumcst.2 . . . . 5 𝑘𝐵
43nfel1 2998 . . . 4 𝑘 𝐵 ∈ (0[,]+∞)
52, 4nfan 1893 . . 3 𝑘(𝐴𝑉𝐵 ∈ (0[,]+∞))
6 simpl 483 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 simplr 765 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 xrge0tmd 31077 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
9 tmdmnd 22602 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
12 inss2 4209 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ Fin
13 simpr 485 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sseldi 3968 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
15 simplr 765 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ (0[,]+∞))
16 xrge0base 30589 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
17 eqid 2825 . . . . . 6 (.g‘(ℝ*𝑠s (0[,]+∞))) = (.g‘(ℝ*𝑠s (0[,]+∞)))
183, 16, 17gsumconstf 18978 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
1911, 14, 15, 18syl3anc 1365 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
20 hashcl 13710 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2114, 20syl 17 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℕ0)
22 xrge0mulgnn0 30593 . . . . 5 (((♯‘𝑥) ∈ ℕ0𝐵 ∈ (0[,]+∞)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2321, 15, 22syl2anc 584 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2419, 23eqtrd 2860 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥) ·e 𝐵))
255, 1, 6, 7, 24esumval 31194 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ))
26 nn0ssre 11893 . . . . . . . . . 10 0 ⊆ ℝ
27 ressxr 10677 . . . . . . . . . 10 ℝ ⊆ ℝ*
2826, 27sstri 3979 . . . . . . . . 9 0 ⊆ ℝ*
29 pnfxr 10687 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4739 . . . . . . . . . 10 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} ⊆ ℝ*
3228, 31unssi 4164 . . . . . . . 8 (ℕ0 ∪ {+∞}) ⊆ ℝ*
33 hashf 13691 . . . . . . . . 9 ♯:V⟶(ℕ0 ∪ {+∞})
34 vex 3502 . . . . . . . . 9 𝑥 ∈ V
35 ffvelrn 6844 . . . . . . . . 9 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (ℕ0 ∪ {+∞}))
3633, 34, 35mp2an 688 . . . . . . . 8 (♯‘𝑥) ∈ (ℕ0 ∪ {+∞})
3732, 36sselii 3967 . . . . . . 7 (♯‘𝑥) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℝ*)
39 iccssxr 12812 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
40 simpr 485 . . . . . . . 8 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
4139, 40sseldi 3968 . . . . . . 7 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
4241adantr 481 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ ℝ*)
4338, 42xmulcld 12688 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ∈ ℝ*)
4443fmpttd 6874 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4544frnd 6517 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ*)
46 hashxrcl 13711 . . . . 5 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4746adantr 481 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (♯‘𝐴) ∈ ℝ*)
4847, 41xmulcld 12688 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ((♯‘𝐴) ·e 𝐵) ∈ ℝ*)
49 vex 3502 . . . . . . . 8 𝑦 ∈ V
50 eqid 2825 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))
5150elrnmpt 5826 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵)))
5249, 51ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5352biimpi 217 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5447adantr 481 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝐴) ∈ ℝ*)
55 0xr 10680 . . . . . . . . . . 11 0 ∈ ℝ*
5655a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℝ*)
5729a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → +∞ ∈ ℝ*)
58 iccgelb 12786 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
5956, 57, 15, 58syl3anc 1365 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ 𝐵)
6042, 59jca 512 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
616adantr 481 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
62 inss1 4208 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
6362sseli 3966 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
64 elpwi 4553 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6513, 63, 643syl 18 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
66 ssdomg 8547 . . . . . . . . . 10 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
6761, 65, 66sylc 65 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
68 hashdomi 13734 . . . . . . . . 9 (𝑥𝐴 → (♯‘𝑥) ≤ (♯‘𝐴))
6967, 68syl 17 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ≤ (♯‘𝐴))
70 xlemul1a 12674 . . . . . . . 8 ((((♯‘𝑥) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ (♯‘𝑥) ≤ (♯‘𝐴)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7138, 54, 60, 69, 70syl31anc 1367 . . . . . . 7 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7271ralrimiva 3186 . . . . . 6 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
73 r19.29r 3259 . . . . . 6 ((∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
7453, 72, 73syl2anr 596 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
75 simpl 483 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 = ((♯‘𝑥) ·e 𝐵))
76 simpr 485 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7775, 76eqbrtrd 5084 . . . . . 6 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7877rexlimivw 3286 . . . . 5 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7974, 78syl 17 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
8079ralrimiva 3186 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
81 pwidg 4558 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
8281ancri 550 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
83 elin 4172 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
8482, 83sylibr 235 . . . . . . . . 9 (𝐴 ∈ Fin → 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
85 eqid 2825 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)
86 fveq2 6666 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
8786oveq1d 7166 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵))
8887rspceeqv 3641 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
8985, 88mpan2 687 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
90 ovex 7184 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) ∈ V
9150elrnmpt 5826 . . . . . . . . . . 11 (((♯‘𝐴) ·e 𝐵) ∈ V → (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵)))
9290, 91ax-mp 5 . . . . . . . . . 10 (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
9389, 92sylibr 235 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9484, 93syl 17 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9594adantl 482 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
96 simplr 765 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
97 breq2 5066 . . . . . . . 8 (𝑧 = ((♯‘𝐴) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝐴) ·e 𝐵)))
9897rspcev 3626 . . . . . . 7 ((((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
9995, 96, 98syl2anc 584 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
100 0elpw 5252 . . . . . . . . . . . 12 ∅ ∈ 𝒫 𝐴
101 0fin 8738 . . . . . . . . . . . 12 ∅ ∈ Fin
102 elin 4172 . . . . . . . . . . . 12 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
103100, 101, 102mpbir2an 707 . . . . . . . . . . 11 ∅ ∈ (𝒫 𝐴 ∩ Fin)
104103a1i 11 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∅ ∈ (𝒫 𝐴 ∩ Fin))
105 simpr 485 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝐵 = 0)
106105oveq2d 7167 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘∅) ·e 𝐵) = ((♯‘∅) ·e 0))
107 hash0 13721 . . . . . . . . . . . . 13 (♯‘∅) = 0
108107, 55eqeltri 2913 . . . . . . . . . . . 12 (♯‘∅) ∈ ℝ*
109 xmul01 12653 . . . . . . . . . . . 12 ((♯‘∅) ∈ ℝ* → ((♯‘∅) ·e 0) = 0)
110108, 109ax-mp 5 . . . . . . . . . . 11 ((♯‘∅) ·e 0) = 0
111106, 110syl6req 2877 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 = ((♯‘∅) ·e 𝐵))
112 fveq2 6666 . . . . . . . . . . . 12 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
113112oveq1d 7166 . . . . . . . . . . 11 (𝑥 = ∅ → ((♯‘𝑥) ·e 𝐵) = ((♯‘∅) ·e 𝐵))
114113rspceeqv 3641 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((♯‘∅) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
115104, 111, 114syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
116 ovex 7184 . . . . . . . . . 10 ((♯‘𝑥) ·e 𝐵) ∈ V
11750, 116elrnmpti 5830 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
118115, 117sylibr 235 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
119 simpllr 772 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
120105oveq2d 7167 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 0))
12147ad4antr 728 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → (♯‘𝐴) ∈ ℝ*)
122 xmul01 12653 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℝ* → ((♯‘𝐴) ·e 0) = 0)
123121, 122syl 17 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 0) = 0)
124120, 123eqtrd 2860 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = 0)
125119, 124breqtrd 5088 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < 0)
126 breq2 5066 . . . . . . . . 9 (𝑧 = 0 → (𝑦 < 𝑧𝑦 < 0))
127126rspcev 3626 . . . . . . . 8 ((0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
128118, 125, 127syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
129 simplr 765 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ 𝒫 𝐴)
130 simpr 485 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) = 𝑛)
131 simp-4r 780 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℕ)
132130, 131eqeltrd 2917 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) ∈ ℕ)
133 nnnn0 11896 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) ∈ ℕ → (♯‘𝑎) ∈ ℕ0)
134 vex 3502 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
135 hashclb 13712 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0))
136134, 135ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0)
137133, 136sylibr 235 . . . . . . . . . . . . . . 15 ((♯‘𝑎) ∈ ℕ → 𝑎 ∈ Fin)
138132, 137syl 17 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ Fin)
139129, 138elind 4174 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
140 eqidd 2826 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
141 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (♯‘𝑥) = (♯‘𝑎))
142141oveq1d 7166 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
143142rspceeqv 3641 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
144139, 140, 143syl2anc 584 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
14550, 116elrnmpti 5830 . . . . . . . . . . . 12 (((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
146144, 145sylibr 235 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
147 simpllr 772 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑦 / 𝐵) < 𝑛)
148 simp-8r 788 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 ∈ ℝ)
149131nnred 11645 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℝ)
150 simp-5r 782 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ+)
151148, 149, 150ltdivmul2d 12476 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((𝑦 / 𝐵) < 𝑛𝑦 < (𝑛 · 𝐵)))
152147, 151mpbid 233 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < (𝑛 · 𝐵))
153130oveq1d 7166 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 ·e 𝐵))
154150rpred 12424 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ)
155 rexmul 12657 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
156149, 154, 155syl2anc 584 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
157153, 156eqtrd 2860 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 · 𝐵))
158152, 157breqtrrd 5090 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < ((♯‘𝑎) ·e 𝐵))
159 breq2 5066 . . . . . . . . . . . 12 (𝑧 = ((♯‘𝑎) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝑎) ·e 𝐵)))
160159rspcev 3626 . . . . . . . . . . 11 ((((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝑎) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
161146, 158, 160syl2anc 584 . . . . . . . . . 10 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
162161rexlimdva2 3291 . . . . . . . . 9 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) → (∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
163162impr 455 . . . . . . . 8 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
164 simp-4r 780 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ)
165 simpr 485 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
166164, 165rerpdivcld 12455 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ)
167 arch 11886 . . . . . . . . . 10 ((𝑦 / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
168166, 167syl 17 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
169 ishashinf 13814 . . . . . . . . . 10 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
170169ad2antlr 723 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
171 r19.29r 3259 . . . . . . . . 9 ((∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
172168, 170, 171syl2anc 584 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
173163, 172r19.29a 3293 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
174 nfielex 8739 . . . . . . . . . . . 12 𝐴 ∈ Fin → ∃𝑙 𝑙𝐴)
175174adantr 481 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑙 𝑙𝐴)
176 snelpwi 5332 . . . . . . . . . . . . . . 15 (𝑙𝐴 → {𝑙} ∈ 𝒫 𝐴)
177 snfi 8586 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
178176, 177jctir 521 . . . . . . . . . . . . . 14 (𝑙𝐴 → ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
179 elin 4172 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
180178, 179sylibr 235 . . . . . . . . . . . . 13 (𝑙𝐴 → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
181180adantl 482 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
182 simplr 765 . . . . . . . . . . . . . 14 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → 𝐵 = +∞)
183182oveq2d 7167 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e 𝐵) = ((♯‘{𝑙}) ·e +∞))
184 hashsng 13723 . . . . . . . . . . . . . . . 16 (𝑙𝐴 → (♯‘{𝑙}) = 1)
185 1re 10633 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
18627, 185sselii 3967 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
187184, 186syl6eqel 2925 . . . . . . . . . . . . . . 15 (𝑙𝐴 → (♯‘{𝑙}) ∈ ℝ*)
188 0lt1 11154 . . . . . . . . . . . . . . . 16 0 < 1
189188, 184breqtrrid 5100 . . . . . . . . . . . . . . 15 (𝑙𝐴 → 0 < (♯‘{𝑙}))
190 xmulpnf1 12660 . . . . . . . . . . . . . . 15 (((♯‘{𝑙}) ∈ ℝ* ∧ 0 < (♯‘{𝑙})) → ((♯‘{𝑙}) ·e +∞) = +∞)
191187, 189, 190syl2anc 584 . . . . . . . . . . . . . 14 (𝑙𝐴 → ((♯‘{𝑙}) ·e +∞) = +∞)
192191adantl 482 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e +∞) = +∞)
193183, 192eqtr2d 2861 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → +∞ = ((♯‘{𝑙}) ·e 𝐵))
194 fveq2 6666 . . . . . . . . . . . . . 14 (𝑥 = {𝑙} → (♯‘𝑥) = (♯‘{𝑙}))
195194oveq1d 7166 . . . . . . . . . . . . 13 (𝑥 = {𝑙} → ((♯‘𝑥) ·e 𝐵) = ((♯‘{𝑙}) ·e 𝐵))
196195rspceeqv 3641 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((♯‘{𝑙}) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
197181, 193, 196syl2anc 584 . . . . . . . . . . 11 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
198175, 197exlimddv 1929 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
199198adantll 710 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
20050, 116elrnmpti 5830 . . . . . . . . 9 (+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
201199, 200sylibr 235 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
202 simp-4r 780 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 ∈ ℝ)
203 ltpnf 12508 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < +∞)
204202, 203syl 17 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 < +∞)
205 breq2 5066 . . . . . . . . 9 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
206205rspcev 3626 . . . . . . . 8 ((+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
207201, 204, 206syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
208 simp-4r 780 . . . . . . . 8 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ (0[,]+∞))
209 elxrge02 30525 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
210208, 209sylib 219 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
211128, 173, 207, 210mpjao3dan 1425 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
21299, 211pm2.61dan 809 . . . . 5 ((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
213212ex 413 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) → (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
214213ralrimiva 3186 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
215 supxr2 12700 . . 3 (((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ* ∧ ((♯‘𝐴) ·e 𝐵) ∈ ℝ*) ∧ (∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵) ∧ ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21645, 48, 80, 214, 215syl22anc 836 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21725, 216eqtrd 2860 1 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ w3o 1080   = wceq 1530  ∃wex 1773   ∈ wcel 2107  Ⅎwnfc 2965  ∀wral 3142  ∃wrex 3143  Vcvv 3499   ∪ cun 3937   ∩ cin 3938   ⊆ wss 3939  ∅c0 4294  𝒫 cpw 4541  {csn 4563   class class class wbr 5062   ↦ cmpt 5142  ran crn 5554  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151   ≼ cdom 8499  Fincfn 8501  supcsup 8896  ℝcr 10528  0cc0 10529  1c1 10530   · cmul 10534  +∞cpnf 10664  ℝ*cxr 10666   < clt 10667   ≤ cle 10668   / cdiv 11289  ℕcn 11630  ℕ0cn0 11889  ℝ+crp 12382   ·e cxmu 12499  [,]cicc 12734  ♯chash 13683   ↾s cress 16477   Σg cgsu 16707  ℝ*𝑠cxrs 16766  Mndcmnd 17903  .gcmg 18157  TopMndctmd 22597  Σ*cesum 31175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15414  df-sin 15416  df-cos 15417  df-pi 15419  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-rest 16689  df-topn 16690  df-0g 16708  df-gsum 16709  df-topgen 16710  df-pt 16711  df-prds 16714  df-ordt 16767  df-xrs 16768  df-qtop 16773  df-imas 16774  df-xps 16776  df-mre 16850  df-mrc 16851  df-acs 16853  df-ps 17803  df-tsr 17804  df-plusf 17844  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-mhm 17947  df-submnd 17948  df-grp 18039  df-minusg 18040  df-sbg 18041  df-mulg 18158  df-subg 18209  df-cntz 18380  df-cmn 18831  df-abl 18832  df-mgp 19163  df-ur 19175  df-ring 19222  df-cring 19223  df-subrg 19456  df-abv 19511  df-lmod 19559  df-scaf 19560  df-sra 19867  df-rgmod 19868  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-lp 21663  df-perf 21664  df-cn 21754  df-cnp 21755  df-haus 21842  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-tmd 22599  df-tgp 22600  df-tsms 22653  df-trg 22686  df-xms 22848  df-ms 22849  df-tms 22850  df-nm 23110  df-ngp 23111  df-nrg 23113  df-nlm 23114  df-ii 23403  df-cncf 23404  df-limc 24382  df-dv 24383  df-log 25056  df-esum 31176 This theorem is referenced by:  esumpinfval  31221  esumpinfsum  31225
 Copyright terms: Public domain W3C validator