Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 32662
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 𝑘𝐴
esumcst.2 𝑘𝐵
Assertion
Ref Expression
esumcst ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcst
Dummy variables 𝑎 𝑙 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 𝑘𝐴
21nfel1 2923 . . . 4 𝑘 𝐴𝑉
3 esumcst.2 . . . . 5 𝑘𝐵
43nfel1 2923 . . . 4 𝑘 𝐵 ∈ (0[,]+∞)
52, 4nfan 1902 . . 3 𝑘(𝐴𝑉𝐵 ∈ (0[,]+∞))
6 simpl 483 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 simplr 767 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 xrge0tmd 32526 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
9 tmdmnd 23426 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
12 inss2 4189 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ Fin
13 simpr 485 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sselid 3942 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
15 simplr 767 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ (0[,]+∞))
16 xrge0base 31876 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
17 eqid 2736 . . . . . 6 (.g‘(ℝ*𝑠s (0[,]+∞))) = (.g‘(ℝ*𝑠s (0[,]+∞)))
183, 16, 17gsumconstf 19712 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
1911, 14, 15, 18syl3anc 1371 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
20 hashcl 14256 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2114, 20syl 17 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℕ0)
22 xrge0mulgnn0 31880 . . . . 5 (((♯‘𝑥) ∈ ℕ0𝐵 ∈ (0[,]+∞)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2321, 15, 22syl2anc 584 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2419, 23eqtrd 2776 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥) ·e 𝐵))
255, 1, 6, 7, 24esumval 32645 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ))
26 nn0ssre 12417 . . . . . . . . . 10 0 ⊆ ℝ
27 ressxr 11199 . . . . . . . . . 10 ℝ ⊆ ℝ*
2826, 27sstri 3953 . . . . . . . . 9 0 ⊆ ℝ*
29 pnfxr 11209 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4768 . . . . . . . . . 10 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} ⊆ ℝ*
3228, 31unssi 4145 . . . . . . . 8 (ℕ0 ∪ {+∞}) ⊆ ℝ*
33 hashf 14238 . . . . . . . . 9 ♯:V⟶(ℕ0 ∪ {+∞})
34 vex 3449 . . . . . . . . 9 𝑥 ∈ V
35 ffvelcdm 7032 . . . . . . . . 9 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (ℕ0 ∪ {+∞}))
3633, 34, 35mp2an 690 . . . . . . . 8 (♯‘𝑥) ∈ (ℕ0 ∪ {+∞})
3732, 36sselii 3941 . . . . . . 7 (♯‘𝑥) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℝ*)
39 iccssxr 13347 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
40 simpr 485 . . . . . . . 8 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
4139, 40sselid 3942 . . . . . . 7 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
4241adantr 481 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ ℝ*)
4338, 42xmulcld 13221 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ∈ ℝ*)
4443fmpttd 7063 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4544frnd 6676 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ*)
46 hashxrcl 14257 . . . . 5 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4746adantr 481 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (♯‘𝐴) ∈ ℝ*)
4847, 41xmulcld 13221 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ((♯‘𝐴) ·e 𝐵) ∈ ℝ*)
49 vex 3449 . . . . . . . 8 𝑦 ∈ V
50 eqid 2736 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))
5150elrnmpt 5911 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵)))
5249, 51ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5352biimpi 215 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5447adantr 481 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝐴) ∈ ℝ*)
55 0xr 11202 . . . . . . . . . . 11 0 ∈ ℝ*
5655a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℝ*)
5729a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → +∞ ∈ ℝ*)
58 iccgelb 13320 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
5956, 57, 15, 58syl3anc 1371 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ 𝐵)
6042, 59jca 512 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
616adantr 481 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
62 inss1 4188 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
6362sseli 3940 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
64 elpwi 4567 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6513, 63, 643syl 18 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
66 ssdomg 8940 . . . . . . . . . 10 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
6761, 65, 66sylc 65 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
68 hashdomi 14280 . . . . . . . . 9 (𝑥𝐴 → (♯‘𝑥) ≤ (♯‘𝐴))
6967, 68syl 17 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ≤ (♯‘𝐴))
70 xlemul1a 13207 . . . . . . . 8 ((((♯‘𝑥) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ (♯‘𝑥) ≤ (♯‘𝐴)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7138, 54, 60, 69, 70syl31anc 1373 . . . . . . 7 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7271ralrimiva 3143 . . . . . 6 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
73 r19.29r 3119 . . . . . 6 ((∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
7453, 72, 73syl2anr 597 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
75 simpl 483 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 = ((♯‘𝑥) ·e 𝐵))
76 simpr 485 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7775, 76eqbrtrd 5127 . . . . . 6 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7877rexlimivw 3148 . . . . 5 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7974, 78syl 17 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
8079ralrimiva 3143 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
81 pwidg 4580 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
8281ancri 550 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
83 elin 3926 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
8482, 83sylibr 233 . . . . . . . . 9 (𝐴 ∈ Fin → 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
85 eqid 2736 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)
86 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
8786oveq1d 7372 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵))
8887rspceeqv 3595 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
8985, 88mpan2 689 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
90 ovex 7390 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) ∈ V
9150elrnmpt 5911 . . . . . . . . . . 11 (((♯‘𝐴) ·e 𝐵) ∈ V → (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵)))
9290, 91ax-mp 5 . . . . . . . . . 10 (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
9389, 92sylibr 233 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9484, 93syl 17 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9594adantl 482 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
96 simplr 767 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
97 breq2 5109 . . . . . . . 8 (𝑧 = ((♯‘𝐴) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝐴) ·e 𝐵)))
9897rspcev 3581 . . . . . . 7 ((((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
9995, 96, 98syl2anc 584 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
100 0elpw 5311 . . . . . . . . . . . 12 ∅ ∈ 𝒫 𝐴
101 0fin 9115 . . . . . . . . . . . 12 ∅ ∈ Fin
102 elin 3926 . . . . . . . . . . . 12 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
103100, 101, 102mpbir2an 709 . . . . . . . . . . 11 ∅ ∈ (𝒫 𝐴 ∩ Fin)
104103a1i 11 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∅ ∈ (𝒫 𝐴 ∩ Fin))
105 simpr 485 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝐵 = 0)
106105oveq2d 7373 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘∅) ·e 𝐵) = ((♯‘∅) ·e 0))
107 hash0 14267 . . . . . . . . . . . . 13 (♯‘∅) = 0
108107, 55eqeltri 2834 . . . . . . . . . . . 12 (♯‘∅) ∈ ℝ*
109 xmul01 13186 . . . . . . . . . . . 12 ((♯‘∅) ∈ ℝ* → ((♯‘∅) ·e 0) = 0)
110108, 109ax-mp 5 . . . . . . . . . . 11 ((♯‘∅) ·e 0) = 0
111106, 110eqtr2di 2793 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 = ((♯‘∅) ·e 𝐵))
112 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
113112oveq1d 7372 . . . . . . . . . . 11 (𝑥 = ∅ → ((♯‘𝑥) ·e 𝐵) = ((♯‘∅) ·e 𝐵))
114113rspceeqv 3595 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((♯‘∅) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
115104, 111, 114syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
116 ovex 7390 . . . . . . . . . 10 ((♯‘𝑥) ·e 𝐵) ∈ V
11750, 116elrnmpti 5915 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
118115, 117sylibr 233 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
119 simpllr 774 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
120105oveq2d 7373 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 0))
12147ad4antr 730 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → (♯‘𝐴) ∈ ℝ*)
122 xmul01 13186 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℝ* → ((♯‘𝐴) ·e 0) = 0)
123121, 122syl 17 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 0) = 0)
124120, 123eqtrd 2776 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = 0)
125119, 124breqtrd 5131 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < 0)
126 breq2 5109 . . . . . . . . 9 (𝑧 = 0 → (𝑦 < 𝑧𝑦 < 0))
127126rspcev 3581 . . . . . . . 8 ((0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
128118, 125, 127syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
129 simplr 767 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ 𝒫 𝐴)
130 simpr 485 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) = 𝑛)
131 simp-4r 782 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℕ)
132130, 131eqeltrd 2838 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) ∈ ℕ)
133 nnnn0 12420 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) ∈ ℕ → (♯‘𝑎) ∈ ℕ0)
134 vex 3449 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
135 hashclb 14258 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0))
136134, 135ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0)
137133, 136sylibr 233 . . . . . . . . . . . . . . 15 ((♯‘𝑎) ∈ ℕ → 𝑎 ∈ Fin)
138132, 137syl 17 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ Fin)
139129, 138elind 4154 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
140 eqidd 2737 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
141 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (♯‘𝑥) = (♯‘𝑎))
142141oveq1d 7372 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
143142rspceeqv 3595 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
144139, 140, 143syl2anc 584 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
14550, 116elrnmpti 5915 . . . . . . . . . . . 12 (((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
146144, 145sylibr 233 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
147 simpllr 774 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑦 / 𝐵) < 𝑛)
148 simp-8r 790 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 ∈ ℝ)
149131nnred 12168 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℝ)
150 simp-5r 784 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ+)
151148, 149, 150ltdivmul2d 13009 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((𝑦 / 𝐵) < 𝑛𝑦 < (𝑛 · 𝐵)))
152147, 151mpbid 231 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < (𝑛 · 𝐵))
153130oveq1d 7372 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 ·e 𝐵))
154150rpred 12957 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ)
155 rexmul 13190 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
156149, 154, 155syl2anc 584 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
157153, 156eqtrd 2776 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 · 𝐵))
158152, 157breqtrrd 5133 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < ((♯‘𝑎) ·e 𝐵))
159 breq2 5109 . . . . . . . . . . . 12 (𝑧 = ((♯‘𝑎) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝑎) ·e 𝐵)))
160159rspcev 3581 . . . . . . . . . . 11 ((((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝑎) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
161146, 158, 160syl2anc 584 . . . . . . . . . 10 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
162161rexlimdva2 3154 . . . . . . . . 9 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) → (∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
163162impr 455 . . . . . . . 8 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
164 simp-4r 782 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ)
165 simpr 485 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
166164, 165rerpdivcld 12988 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ)
167 arch 12410 . . . . . . . . . 10 ((𝑦 / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
168166, 167syl 17 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
169 ishashinf 14362 . . . . . . . . . 10 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
170169ad2antlr 725 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
171 r19.29r 3119 . . . . . . . . 9 ((∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
172168, 170, 171syl2anc 584 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
173163, 172r19.29a 3159 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
174 nfielex 9217 . . . . . . . . . . . 12 𝐴 ∈ Fin → ∃𝑙 𝑙𝐴)
175174adantr 481 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑙 𝑙𝐴)
176 snelpwi 5400 . . . . . . . . . . . . . . 15 (𝑙𝐴 → {𝑙} ∈ 𝒫 𝐴)
177 snfi 8988 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
178176, 177jctir 521 . . . . . . . . . . . . . 14 (𝑙𝐴 → ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
179 elin 3926 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
180178, 179sylibr 233 . . . . . . . . . . . . 13 (𝑙𝐴 → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
181180adantl 482 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
182 simplr 767 . . . . . . . . . . . . . 14 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → 𝐵 = +∞)
183182oveq2d 7373 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e 𝐵) = ((♯‘{𝑙}) ·e +∞))
184 hashsng 14269 . . . . . . . . . . . . . . . 16 (𝑙𝐴 → (♯‘{𝑙}) = 1)
185 1re 11155 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
18627, 185sselii 3941 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
187184, 186eqeltrdi 2846 . . . . . . . . . . . . . . 15 (𝑙𝐴 → (♯‘{𝑙}) ∈ ℝ*)
188 0lt1 11677 . . . . . . . . . . . . . . . 16 0 < 1
189188, 184breqtrrid 5143 . . . . . . . . . . . . . . 15 (𝑙𝐴 → 0 < (♯‘{𝑙}))
190 xmulpnf1 13193 . . . . . . . . . . . . . . 15 (((♯‘{𝑙}) ∈ ℝ* ∧ 0 < (♯‘{𝑙})) → ((♯‘{𝑙}) ·e +∞) = +∞)
191187, 189, 190syl2anc 584 . . . . . . . . . . . . . 14 (𝑙𝐴 → ((♯‘{𝑙}) ·e +∞) = +∞)
192191adantl 482 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e +∞) = +∞)
193183, 192eqtr2d 2777 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → +∞ = ((♯‘{𝑙}) ·e 𝐵))
194 fveq2 6842 . . . . . . . . . . . . . 14 (𝑥 = {𝑙} → (♯‘𝑥) = (♯‘{𝑙}))
195194oveq1d 7372 . . . . . . . . . . . . 13 (𝑥 = {𝑙} → ((♯‘𝑥) ·e 𝐵) = ((♯‘{𝑙}) ·e 𝐵))
196195rspceeqv 3595 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((♯‘{𝑙}) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
197181, 193, 196syl2anc 584 . . . . . . . . . . 11 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
198175, 197exlimddv 1938 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
199198adantll 712 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
20050, 116elrnmpti 5915 . . . . . . . . 9 (+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
201199, 200sylibr 233 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
202 simp-4r 782 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 ∈ ℝ)
203 ltpnf 13041 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < +∞)
204202, 203syl 17 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 < +∞)
205 breq2 5109 . . . . . . . . 9 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
206205rspcev 3581 . . . . . . . 8 ((+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
207201, 204, 206syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
208 simp-4r 782 . . . . . . . 8 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ (0[,]+∞))
209 elxrge02 31788 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
210208, 209sylib 217 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
211128, 173, 207, 210mpjao3dan 1431 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
21299, 211pm2.61dan 811 . . . . 5 ((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
213212ex 413 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) → (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
214213ralrimiva 3143 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
215 supxr2 13233 . . 3 (((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ* ∧ ((♯‘𝐴) ·e 𝐵) ∈ ℝ*) ∧ (∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵) ∧ ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21645, 48, 80, 214, 215syl22anc 837 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21725, 216eqtrd 2776 1 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wex 1781  wcel 2106  wnfc 2887  wral 3064  wrex 3073  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cdom 8881  Fincfn 8883  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cn 12153  0cn0 12413  +crp 12915   ·e cxmu 13032  [,]cicc 13267  chash 14230  s cress 17112   Σg cgsu 17322  *𝑠cxrs 17382  Mndcmnd 18556  .gcmg 18872  TopMndctmd 23421  Σ*cesum 32626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-ordt 17383  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-abv 20276  df-lmod 20324  df-scaf 20325  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tmd 23423  df-tgp 23424  df-tsms 23478  df-trg 23511  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942  df-ii 24240  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-esum 32627
This theorem is referenced by:  esumpinfval  32672  esumpinfsum  32676
  Copyright terms: Public domain W3C validator