Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 34053
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 𝑘𝐴
esumcst.2 𝑘𝐵
Assertion
Ref Expression
esumcst ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcst
Dummy variables 𝑎 𝑙 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 𝑘𝐴
21nfel1 2908 . . . 4 𝑘 𝐴𝑉
3 esumcst.2 . . . . 5 𝑘𝐵
43nfel1 2908 . . . 4 𝑘 𝐵 ∈ (0[,]+∞)
52, 4nfan 1899 . . 3 𝑘(𝐴𝑉𝐵 ∈ (0[,]+∞))
6 simpl 482 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 simplr 768 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 xrge0tmd 33935 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
9 tmdmnd 23962 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
12 inss2 4201 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ Fin
13 simpr 484 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sselid 3944 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
15 simplr 768 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ (0[,]+∞))
16 xrge0base 32952 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
17 eqid 2729 . . . . . 6 (.g‘(ℝ*𝑠s (0[,]+∞))) = (.g‘(ℝ*𝑠s (0[,]+∞)))
183, 16, 17gsumconstf 19865 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
1911, 14, 15, 18syl3anc 1373 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
20 hashcl 14321 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2114, 20syl 17 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℕ0)
22 xrge0mulgnn0 32956 . . . . 5 (((♯‘𝑥) ∈ ℕ0𝐵 ∈ (0[,]+∞)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2321, 15, 22syl2anc 584 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2419, 23eqtrd 2764 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥) ·e 𝐵))
255, 1, 6, 7, 24esumval 34036 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ))
26 nn0ssre 12446 . . . . . . . . . 10 0 ⊆ ℝ
27 ressxr 11218 . . . . . . . . . 10 ℝ ⊆ ℝ*
2826, 27sstri 3956 . . . . . . . . 9 0 ⊆ ℝ*
29 pnfxr 11228 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4772 . . . . . . . . . 10 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} ⊆ ℝ*
3228, 31unssi 4154 . . . . . . . 8 (ℕ0 ∪ {+∞}) ⊆ ℝ*
33 hashf 14303 . . . . . . . . 9 ♯:V⟶(ℕ0 ∪ {+∞})
34 vex 3451 . . . . . . . . 9 𝑥 ∈ V
35 ffvelcdm 7053 . . . . . . . . 9 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (ℕ0 ∪ {+∞}))
3633, 34, 35mp2an 692 . . . . . . . 8 (♯‘𝑥) ∈ (ℕ0 ∪ {+∞})
3732, 36sselii 3943 . . . . . . 7 (♯‘𝑥) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℝ*)
39 iccssxr 13391 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
40 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
4139, 40sselid 3944 . . . . . . 7 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
4241adantr 480 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ ℝ*)
4338, 42xmulcld 13262 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ∈ ℝ*)
4443fmpttd 7087 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4544frnd 6696 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ*)
46 hashxrcl 14322 . . . . 5 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4746adantr 480 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (♯‘𝐴) ∈ ℝ*)
4847, 41xmulcld 13262 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ((♯‘𝐴) ·e 𝐵) ∈ ℝ*)
49 vex 3451 . . . . . . . 8 𝑦 ∈ V
50 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))
5150elrnmpt 5922 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵)))
5249, 51ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5352biimpi 216 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5447adantr 480 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝐴) ∈ ℝ*)
55 0xr 11221 . . . . . . . . . . 11 0 ∈ ℝ*
5655a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℝ*)
5729a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → +∞ ∈ ℝ*)
58 iccgelb 13363 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
5956, 57, 15, 58syl3anc 1373 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ 𝐵)
6042, 59jca 511 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
616adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
62 inss1 4200 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
6362sseli 3942 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
64 elpwi 4570 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6513, 63, 643syl 18 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
66 ssdomg 8971 . . . . . . . . . 10 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
6761, 65, 66sylc 65 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
68 hashdomi 14345 . . . . . . . . 9 (𝑥𝐴 → (♯‘𝑥) ≤ (♯‘𝐴))
6967, 68syl 17 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ≤ (♯‘𝐴))
70 xlemul1a 13248 . . . . . . . 8 ((((♯‘𝑥) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ (♯‘𝑥) ≤ (♯‘𝐴)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7138, 54, 60, 69, 70syl31anc 1375 . . . . . . 7 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7271ralrimiva 3125 . . . . . 6 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
73 r19.29r 3096 . . . . . 6 ((∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
7453, 72, 73syl2anr 597 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
75 simpl 482 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 = ((♯‘𝑥) ·e 𝐵))
76 simpr 484 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7775, 76eqbrtrd 5129 . . . . . 6 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7877rexlimivw 3130 . . . . 5 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7974, 78syl 17 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
8079ralrimiva 3125 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
81 pwidg 4583 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
8281ancri 549 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
83 elin 3930 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
8482, 83sylibr 234 . . . . . . . . 9 (𝐴 ∈ Fin → 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
85 eqid 2729 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)
86 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
8786oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵))
8887rspceeqv 3611 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
8985, 88mpan2 691 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
90 ovex 7420 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) ∈ V
9150elrnmpt 5922 . . . . . . . . . . 11 (((♯‘𝐴) ·e 𝐵) ∈ V → (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵)))
9290, 91ax-mp 5 . . . . . . . . . 10 (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
9389, 92sylibr 234 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9484, 93syl 17 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9594adantl 481 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
96 simplr 768 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
97 breq2 5111 . . . . . . . 8 (𝑧 = ((♯‘𝐴) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝐴) ·e 𝐵)))
9897rspcev 3588 . . . . . . 7 ((((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
9995, 96, 98syl2anc 584 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
100 0elpw 5311 . . . . . . . . . . . 12 ∅ ∈ 𝒫 𝐴
101 0fi 9013 . . . . . . . . . . . 12 ∅ ∈ Fin
102 elin 3930 . . . . . . . . . . . 12 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
103100, 101, 102mpbir2an 711 . . . . . . . . . . 11 ∅ ∈ (𝒫 𝐴 ∩ Fin)
104103a1i 11 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∅ ∈ (𝒫 𝐴 ∩ Fin))
105 simpr 484 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝐵 = 0)
106105oveq2d 7403 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘∅) ·e 𝐵) = ((♯‘∅) ·e 0))
107 hash0 14332 . . . . . . . . . . . . 13 (♯‘∅) = 0
108107, 55eqeltri 2824 . . . . . . . . . . . 12 (♯‘∅) ∈ ℝ*
109 xmul01 13227 . . . . . . . . . . . 12 ((♯‘∅) ∈ ℝ* → ((♯‘∅) ·e 0) = 0)
110108, 109ax-mp 5 . . . . . . . . . . 11 ((♯‘∅) ·e 0) = 0
111106, 110eqtr2di 2781 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 = ((♯‘∅) ·e 𝐵))
112 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
113112oveq1d 7402 . . . . . . . . . . 11 (𝑥 = ∅ → ((♯‘𝑥) ·e 𝐵) = ((♯‘∅) ·e 𝐵))
114113rspceeqv 3611 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((♯‘∅) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
115104, 111, 114syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
116 ovex 7420 . . . . . . . . . 10 ((♯‘𝑥) ·e 𝐵) ∈ V
11750, 116elrnmpti 5926 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
118115, 117sylibr 234 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
119 simpllr 775 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
120105oveq2d 7403 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 0))
12147ad4antr 732 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → (♯‘𝐴) ∈ ℝ*)
122 xmul01 13227 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℝ* → ((♯‘𝐴) ·e 0) = 0)
123121, 122syl 17 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 0) = 0)
124120, 123eqtrd 2764 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = 0)
125119, 124breqtrd 5133 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < 0)
126 breq2 5111 . . . . . . . . 9 (𝑧 = 0 → (𝑦 < 𝑧𝑦 < 0))
127126rspcev 3588 . . . . . . . 8 ((0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
128118, 125, 127syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
129 simplr 768 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ 𝒫 𝐴)
130 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) = 𝑛)
131 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℕ)
132130, 131eqeltrd 2828 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) ∈ ℕ)
133 nnnn0 12449 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) ∈ ℕ → (♯‘𝑎) ∈ ℕ0)
134 vex 3451 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
135 hashclb 14323 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0))
136134, 135ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0)
137133, 136sylibr 234 . . . . . . . . . . . . . . 15 ((♯‘𝑎) ∈ ℕ → 𝑎 ∈ Fin)
138132, 137syl 17 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ Fin)
139129, 138elind 4163 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
140 eqidd 2730 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
141 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (♯‘𝑥) = (♯‘𝑎))
142141oveq1d 7402 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
143142rspceeqv 3611 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
144139, 140, 143syl2anc 584 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
14550, 116elrnmpti 5926 . . . . . . . . . . . 12 (((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
146144, 145sylibr 234 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
147 simpllr 775 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑦 / 𝐵) < 𝑛)
148 simp-8r 791 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 ∈ ℝ)
149131nnred 12201 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℝ)
150 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ+)
151148, 149, 150ltdivmul2d 13047 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((𝑦 / 𝐵) < 𝑛𝑦 < (𝑛 · 𝐵)))
152147, 151mpbid 232 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < (𝑛 · 𝐵))
153130oveq1d 7402 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 ·e 𝐵))
154150rpred 12995 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ)
155 rexmul 13231 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
156149, 154, 155syl2anc 584 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
157153, 156eqtrd 2764 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 · 𝐵))
158152, 157breqtrrd 5135 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < ((♯‘𝑎) ·e 𝐵))
159 breq2 5111 . . . . . . . . . . . 12 (𝑧 = ((♯‘𝑎) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝑎) ·e 𝐵)))
160159rspcev 3588 . . . . . . . . . . 11 ((((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝑎) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
161146, 158, 160syl2anc 584 . . . . . . . . . 10 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
162161rexlimdva2 3136 . . . . . . . . 9 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) → (∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
163162impr 454 . . . . . . . 8 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
164 simp-4r 783 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ)
165 simpr 484 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
166164, 165rerpdivcld 13026 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ)
167 arch 12439 . . . . . . . . . 10 ((𝑦 / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
168166, 167syl 17 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
169 ishashinf 14428 . . . . . . . . . 10 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
170169ad2antlr 727 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
171 r19.29r 3096 . . . . . . . . 9 ((∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
172168, 170, 171syl2anc 584 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
173163, 172r19.29a 3141 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
174 nfielex 9218 . . . . . . . . . . . 12 𝐴 ∈ Fin → ∃𝑙 𝑙𝐴)
175174adantr 480 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑙 𝑙𝐴)
176 snelpwi 5403 . . . . . . . . . . . . . . 15 (𝑙𝐴 → {𝑙} ∈ 𝒫 𝐴)
177 snfi 9014 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
178176, 177jctir 520 . . . . . . . . . . . . . 14 (𝑙𝐴 → ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
179 elin 3930 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
180178, 179sylibr 234 . . . . . . . . . . . . 13 (𝑙𝐴 → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
181180adantl 481 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
182 simplr 768 . . . . . . . . . . . . . 14 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → 𝐵 = +∞)
183182oveq2d 7403 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e 𝐵) = ((♯‘{𝑙}) ·e +∞))
184 hashsng 14334 . . . . . . . . . . . . . . . 16 (𝑙𝐴 → (♯‘{𝑙}) = 1)
185 1re 11174 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
18627, 185sselii 3943 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
187184, 186eqeltrdi 2836 . . . . . . . . . . . . . . 15 (𝑙𝐴 → (♯‘{𝑙}) ∈ ℝ*)
188 0lt1 11700 . . . . . . . . . . . . . . . 16 0 < 1
189188, 184breqtrrid 5145 . . . . . . . . . . . . . . 15 (𝑙𝐴 → 0 < (♯‘{𝑙}))
190 xmulpnf1 13234 . . . . . . . . . . . . . . 15 (((♯‘{𝑙}) ∈ ℝ* ∧ 0 < (♯‘{𝑙})) → ((♯‘{𝑙}) ·e +∞) = +∞)
191187, 189, 190syl2anc 584 . . . . . . . . . . . . . 14 (𝑙𝐴 → ((♯‘{𝑙}) ·e +∞) = +∞)
192191adantl 481 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e +∞) = +∞)
193183, 192eqtr2d 2765 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → +∞ = ((♯‘{𝑙}) ·e 𝐵))
194 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = {𝑙} → (♯‘𝑥) = (♯‘{𝑙}))
195194oveq1d 7402 . . . . . . . . . . . . 13 (𝑥 = {𝑙} → ((♯‘𝑥) ·e 𝐵) = ((♯‘{𝑙}) ·e 𝐵))
196195rspceeqv 3611 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((♯‘{𝑙}) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
197181, 193, 196syl2anc 584 . . . . . . . . . . 11 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
198175, 197exlimddv 1935 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
199198adantll 714 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
20050, 116elrnmpti 5926 . . . . . . . . 9 (+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
201199, 200sylibr 234 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
202 simp-4r 783 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 ∈ ℝ)
203 ltpnf 13080 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < +∞)
204202, 203syl 17 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 < +∞)
205 breq2 5111 . . . . . . . . 9 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
206205rspcev 3588 . . . . . . . 8 ((+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
207201, 204, 206syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
208 simp-4r 783 . . . . . . . 8 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ (0[,]+∞))
209 elxrge02 32852 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
210208, 209sylib 218 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
211128, 173, 207, 210mpjao3dan 1434 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
21299, 211pm2.61dan 812 . . . . 5 ((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
213212ex 412 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) → (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
214213ralrimiva 3125 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
215 supxr2 13274 . . 3 (((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ* ∧ ((♯‘𝐴) ·e 𝐵) ∈ ℝ*) ∧ (∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵) ∧ ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21645, 48, 80, 214, 215syl22anc 838 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21725, 216eqtrd 2764 1 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wex 1779  wcel 2109  wnfc 2876  wral 3044  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  cdom 8916  Fincfn 8918  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  0cn0 12442  +crp 12951   ·e cxmu 13071  [,]cicc 13309  chash 14295  s cress 17200   Σg cgsu 17403  *𝑠cxrs 17463  Mndcmnd 18661  .gcmg 18999  TopMndctmd 23957  Σ*cesum 34017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-ordt 17464  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-ps 18525  df-tsr 18526  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-abv 20718  df-lmod 20768  df-scaf 20769  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tmd 23959  df-tgp 23960  df-tsms 24014  df-trg 24047  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-nrg 24473  df-nlm 24474  df-ii 24770  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-esum 34018
This theorem is referenced by:  esumpinfval  34063  esumpinfsum  34067
  Copyright terms: Public domain W3C validator