Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 34040
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 𝑘𝐴
esumcst.2 𝑘𝐵
Assertion
Ref Expression
esumcst ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcst
Dummy variables 𝑎 𝑙 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 𝑘𝐴
21nfel1 2915 . . . 4 𝑘 𝐴𝑉
3 esumcst.2 . . . . 5 𝑘𝐵
43nfel1 2915 . . . 4 𝑘 𝐵 ∈ (0[,]+∞)
52, 4nfan 1899 . . 3 𝑘(𝐴𝑉𝐵 ∈ (0[,]+∞))
6 simpl 482 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 simplr 768 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 xrge0tmd 33922 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
9 tmdmnd 24011 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
12 inss2 4213 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ Fin
13 simpr 484 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sselid 3956 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
15 simplr 768 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ (0[,]+∞))
16 xrge0base 32952 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
17 eqid 2735 . . . . . 6 (.g‘(ℝ*𝑠s (0[,]+∞))) = (.g‘(ℝ*𝑠s (0[,]+∞)))
183, 16, 17gsumconstf 19914 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
1911, 14, 15, 18syl3anc 1373 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
20 hashcl 14372 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2114, 20syl 17 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℕ0)
22 xrge0mulgnn0 32956 . . . . 5 (((♯‘𝑥) ∈ ℕ0𝐵 ∈ (0[,]+∞)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2321, 15, 22syl2anc 584 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((♯‘𝑥) ·e 𝐵))
2419, 23eqtrd 2770 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((♯‘𝑥) ·e 𝐵))
255, 1, 6, 7, 24esumval 34023 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ))
26 nn0ssre 12503 . . . . . . . . . 10 0 ⊆ ℝ
27 ressxr 11277 . . . . . . . . . 10 ℝ ⊆ ℝ*
2826, 27sstri 3968 . . . . . . . . 9 0 ⊆ ℝ*
29 pnfxr 11287 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4784 . . . . . . . . . 10 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} ⊆ ℝ*
3228, 31unssi 4166 . . . . . . . 8 (ℕ0 ∪ {+∞}) ⊆ ℝ*
33 hashf 14354 . . . . . . . . 9 ♯:V⟶(ℕ0 ∪ {+∞})
34 vex 3463 . . . . . . . . 9 𝑥 ∈ V
35 ffvelcdm 7070 . . . . . . . . 9 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (ℕ0 ∪ {+∞}))
3633, 34, 35mp2an 692 . . . . . . . 8 (♯‘𝑥) ∈ (ℕ0 ∪ {+∞})
3732, 36sselii 3955 . . . . . . 7 (♯‘𝑥) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ∈ ℝ*)
39 iccssxr 13445 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
40 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
4139, 40sselid 3956 . . . . . . 7 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
4241adantr 480 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ ℝ*)
4338, 42xmulcld 13316 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ∈ ℝ*)
4443fmpttd 7104 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4544frnd 6713 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ*)
46 hashxrcl 14373 . . . . 5 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
4746adantr 480 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (♯‘𝐴) ∈ ℝ*)
4847, 41xmulcld 13316 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ((♯‘𝐴) ·e 𝐵) ∈ ℝ*)
49 vex 3463 . . . . . . . 8 𝑦 ∈ V
50 eqid 2735 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))
5150elrnmpt 5938 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵)))
5249, 51ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5352biimpi 216 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵))
5447adantr 480 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝐴) ∈ ℝ*)
55 0xr 11280 . . . . . . . . . . 11 0 ∈ ℝ*
5655a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℝ*)
5729a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → +∞ ∈ ℝ*)
58 iccgelb 13417 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
5956, 57, 15, 58syl3anc 1373 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ 𝐵)
6042, 59jca 511 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
616adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
62 inss1 4212 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
6362sseli 3954 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
64 elpwi 4582 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6513, 63, 643syl 18 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
66 ssdomg 9012 . . . . . . . . . 10 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
6761, 65, 66sylc 65 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
68 hashdomi 14396 . . . . . . . . 9 (𝑥𝐴 → (♯‘𝑥) ≤ (♯‘𝐴))
6967, 68syl 17 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (♯‘𝑥) ≤ (♯‘𝐴))
70 xlemul1a 13302 . . . . . . . 8 ((((♯‘𝑥) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ (♯‘𝑥) ≤ (♯‘𝐴)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7138, 54, 60, 69, 70syl31anc 1375 . . . . . . 7 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7271ralrimiva 3132 . . . . . 6 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
73 r19.29r 3103 . . . . . 6 ((∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
7453, 72, 73syl2anr 597 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)))
75 simpl 482 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 = ((♯‘𝑥) ·e 𝐵))
76 simpr 484 . . . . . . 7 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵))
7775, 76eqbrtrd 5141 . . . . . 6 ((𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7877rexlimivw 3137 . . . . 5 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((♯‘𝑥) ·e 𝐵) ∧ ((♯‘𝑥) ·e 𝐵) ≤ ((♯‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
7974, 78syl 17 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))) → 𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
8079ralrimiva 3132 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵))
81 pwidg 4595 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
8281ancri 549 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
83 elin 3942 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
8482, 83sylibr 234 . . . . . . . . 9 (𝐴 ∈ Fin → 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
85 eqid 2735 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)
86 fveq2 6875 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
8786oveq1d 7418 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵))
8887rspceeqv 3624 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
8985, 88mpan2 691 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
90 ovex 7436 . . . . . . . . . . 11 ((♯‘𝐴) ·e 𝐵) ∈ V
9150elrnmpt 5938 . . . . . . . . . . 11 (((♯‘𝐴) ·e 𝐵) ∈ V → (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵)))
9290, 91ax-mp 5 . . . . . . . . . 10 (((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝐴) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
9389, 92sylibr 234 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9484, 93syl 17 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
9594adantl 481 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
96 simplr 768 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
97 breq2 5123 . . . . . . . 8 (𝑧 = ((♯‘𝐴) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝐴) ·e 𝐵)))
9897rspcev 3601 . . . . . . 7 ((((♯‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
9995, 96, 98syl2anc 584 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
100 0elpw 5326 . . . . . . . . . . . 12 ∅ ∈ 𝒫 𝐴
101 0fi 9054 . . . . . . . . . . . 12 ∅ ∈ Fin
102 elin 3942 . . . . . . . . . . . 12 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
103100, 101, 102mpbir2an 711 . . . . . . . . . . 11 ∅ ∈ (𝒫 𝐴 ∩ Fin)
104103a1i 11 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∅ ∈ (𝒫 𝐴 ∩ Fin))
105 simpr 484 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝐵 = 0)
106105oveq2d 7419 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘∅) ·e 𝐵) = ((♯‘∅) ·e 0))
107 hash0 14383 . . . . . . . . . . . . 13 (♯‘∅) = 0
108107, 55eqeltri 2830 . . . . . . . . . . . 12 (♯‘∅) ∈ ℝ*
109 xmul01 13281 . . . . . . . . . . . 12 ((♯‘∅) ∈ ℝ* → ((♯‘∅) ·e 0) = 0)
110108, 109ax-mp 5 . . . . . . . . . . 11 ((♯‘∅) ·e 0) = 0
111106, 110eqtr2di 2787 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 = ((♯‘∅) ·e 𝐵))
112 fveq2 6875 . . . . . . . . . . . 12 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
113112oveq1d 7418 . . . . . . . . . . 11 (𝑥 = ∅ → ((♯‘𝑥) ·e 𝐵) = ((♯‘∅) ·e 𝐵))
114113rspceeqv 3624 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((♯‘∅) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
115104, 111, 114syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
116 ovex 7436 . . . . . . . . . 10 ((♯‘𝑥) ·e 𝐵) ∈ V
11750, 116elrnmpti 5942 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((♯‘𝑥) ·e 𝐵))
118115, 117sylibr 234 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
119 simpllr 775 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < ((♯‘𝐴) ·e 𝐵))
120105oveq2d 7419 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = ((♯‘𝐴) ·e 0))
12147ad4antr 732 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → (♯‘𝐴) ∈ ℝ*)
122 xmul01 13281 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℝ* → ((♯‘𝐴) ·e 0) = 0)
123121, 122syl 17 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 0) = 0)
124120, 123eqtrd 2770 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((♯‘𝐴) ·e 𝐵) = 0)
125119, 124breqtrd 5145 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < 0)
126 breq2 5123 . . . . . . . . 9 (𝑧 = 0 → (𝑦 < 𝑧𝑦 < 0))
127126rspcev 3601 . . . . . . . 8 ((0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
128118, 125, 127syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
129 simplr 768 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ 𝒫 𝐴)
130 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) = 𝑛)
131 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℕ)
132130, 131eqeltrd 2834 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (♯‘𝑎) ∈ ℕ)
133 nnnn0 12506 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) ∈ ℕ → (♯‘𝑎) ∈ ℕ0)
134 vex 3463 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
135 hashclb 14374 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0))
136134, 135ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Fin ↔ (♯‘𝑎) ∈ ℕ0)
137133, 136sylibr 234 . . . . . . . . . . . . . . 15 ((♯‘𝑎) ∈ ℕ → 𝑎 ∈ Fin)
138132, 137syl 17 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ Fin)
139129, 138elind 4175 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
140 eqidd 2736 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
141 fveq2 6875 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (♯‘𝑥) = (♯‘𝑎))
142141oveq1d 7418 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((♯‘𝑥) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵))
143142rspceeqv 3624 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((♯‘𝑎) ·e 𝐵) = ((♯‘𝑎) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
144139, 140, 143syl2anc 584 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
14550, 116elrnmpti 5942 . . . . . . . . . . . 12 (((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((♯‘𝑎) ·e 𝐵) = ((♯‘𝑥) ·e 𝐵))
146144, 145sylibr 234 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
147 simpllr 775 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑦 / 𝐵) < 𝑛)
148 simp-8r 791 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 ∈ ℝ)
149131nnred 12253 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑛 ∈ ℝ)
150 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ+)
151148, 149, 150ltdivmul2d 13101 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((𝑦 / 𝐵) < 𝑛𝑦 < (𝑛 · 𝐵)))
152147, 151mpbid 232 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < (𝑛 · 𝐵))
153130oveq1d 7418 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 ·e 𝐵))
154150rpred 13049 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝐵 ∈ ℝ)
155 rexmul 13285 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
156149, 154, 155syl2anc 584 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
157153, 156eqtrd 2770 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ((♯‘𝑎) ·e 𝐵) = (𝑛 · 𝐵))
158152, 157breqtrrd 5147 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → 𝑦 < ((♯‘𝑎) ·e 𝐵))
159 breq2 5123 . . . . . . . . . . . 12 (𝑧 = ((♯‘𝑎) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((♯‘𝑎) ·e 𝐵)))
160159rspcev 3601 . . . . . . . . . . 11 ((((♯‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((♯‘𝑎) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
161146, 158, 160syl2anc 584 . . . . . . . . . 10 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (♯‘𝑎) = 𝑛) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
162161rexlimdva2 3143 . . . . . . . . 9 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) → (∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
163162impr 454 . . . . . . . 8 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
164 simp-4r 783 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ)
165 simpr 484 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
166164, 165rerpdivcld 13080 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ)
167 arch 12496 . . . . . . . . . 10 ((𝑦 / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
168166, 167syl 17 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
169 ishashinf 14479 . . . . . . . . . 10 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
170169ad2antlr 727 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛)
171 r19.29r 3103 . . . . . . . . 9 ((∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
172168, 170, 171syl2anc 584 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(♯‘𝑎) = 𝑛))
173163, 172r19.29a 3148 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
174 nfielex 9277 . . . . . . . . . . . 12 𝐴 ∈ Fin → ∃𝑙 𝑙𝐴)
175174adantr 480 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑙 𝑙𝐴)
176 snelpwi 5418 . . . . . . . . . . . . . . 15 (𝑙𝐴 → {𝑙} ∈ 𝒫 𝐴)
177 snfi 9055 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
178176, 177jctir 520 . . . . . . . . . . . . . 14 (𝑙𝐴 → ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
179 elin 3942 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
180178, 179sylibr 234 . . . . . . . . . . . . 13 (𝑙𝐴 → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
181180adantl 481 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
182 simplr 768 . . . . . . . . . . . . . 14 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → 𝐵 = +∞)
183182oveq2d 7419 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e 𝐵) = ((♯‘{𝑙}) ·e +∞))
184 hashsng 14385 . . . . . . . . . . . . . . . 16 (𝑙𝐴 → (♯‘{𝑙}) = 1)
185 1re 11233 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
18627, 185sselii 3955 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
187184, 186eqeltrdi 2842 . . . . . . . . . . . . . . 15 (𝑙𝐴 → (♯‘{𝑙}) ∈ ℝ*)
188 0lt1 11757 . . . . . . . . . . . . . . . 16 0 < 1
189188, 184breqtrrid 5157 . . . . . . . . . . . . . . 15 (𝑙𝐴 → 0 < (♯‘{𝑙}))
190 xmulpnf1 13288 . . . . . . . . . . . . . . 15 (((♯‘{𝑙}) ∈ ℝ* ∧ 0 < (♯‘{𝑙})) → ((♯‘{𝑙}) ·e +∞) = +∞)
191187, 189, 190syl2anc 584 . . . . . . . . . . . . . 14 (𝑙𝐴 → ((♯‘{𝑙}) ·e +∞) = +∞)
192191adantl 481 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((♯‘{𝑙}) ·e +∞) = +∞)
193183, 192eqtr2d 2771 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → +∞ = ((♯‘{𝑙}) ·e 𝐵))
194 fveq2 6875 . . . . . . . . . . . . . 14 (𝑥 = {𝑙} → (♯‘𝑥) = (♯‘{𝑙}))
195194oveq1d 7418 . . . . . . . . . . . . 13 (𝑥 = {𝑙} → ((♯‘𝑥) ·e 𝐵) = ((♯‘{𝑙}) ·e 𝐵))
196195rspceeqv 3624 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((♯‘{𝑙}) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
197181, 193, 196syl2anc 584 . . . . . . . . . . 11 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
198175, 197exlimddv 1935 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
199198adantll 714 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
20050, 116elrnmpti 5942 . . . . . . . . 9 (+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((♯‘𝑥) ·e 𝐵))
201199, 200sylibr 234 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)))
202 simp-4r 783 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 ∈ ℝ)
203 ltpnf 13134 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < +∞)
204202, 203syl 17 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 < +∞)
205 breq2 5123 . . . . . . . . 9 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
206205rspcev 3601 . . . . . . . 8 ((+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ∧ 𝑦 < +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
207201, 204, 206syl2anc 584 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
208 simp-4r 783 . . . . . . . 8 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ (0[,]+∞))
209 elxrge02 32852 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
210208, 209sylib 218 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
211128, 173, 207, 210mpjao3dan 1434 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
21299, 211pm2.61dan 812 . . . . 5 ((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((♯‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧)
213212ex 412 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) → (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
214213ralrimiva 3132 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))
215 supxr2 13328 . . 3 (((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)) ⊆ ℝ* ∧ ((♯‘𝐴) ·e 𝐵) ∈ ℝ*) ∧ (∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 ≤ ((♯‘𝐴) ·e 𝐵) ∧ ∀𝑦 ∈ ℝ (𝑦 < ((♯‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵))𝑦 < 𝑧))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21645, 48, 80, 214, 215syl22anc 838 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((♯‘𝑥) ·e 𝐵)), ℝ*, < ) = ((♯‘𝐴) ·e 𝐵))
21725, 216eqtrd 2770 1 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((♯‘𝐴) ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wex 1779  wcel 2108  wnfc 2883  wral 3051  wrex 3060  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201  ran crn 5655  wf 6526  cfv 6530  (class class class)co 7403  cdom 8955  Fincfn 8957  supcsup 9450  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268   / cdiv 11892  cn 12238  0cn0 12499  +crp 13006   ·e cxmu 13125  [,]cicc 13363  chash 14346  s cress 17249   Σg cgsu 17452  *𝑠cxrs 17512  Mndcmnd 18710  .gcmg 19048  TopMndctmd 24006  Σ*cesum 34004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-ordt 17513  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-ps 18574  df-tsr 18575  df-plusf 18615  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-abv 20767  df-lmod 20817  df-scaf 20818  df-sra 21129  df-rgmod 21130  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-tmd 24008  df-tgp 24009  df-tsms 24063  df-trg 24096  df-xms 24257  df-ms 24258  df-tms 24259  df-nm 24519  df-ngp 24520  df-nrg 24522  df-nlm 24523  df-ii 24819  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-esum 34005
This theorem is referenced by:  esumpinfval  34050  esumpinfsum  34054
  Copyright terms: Public domain W3C validator