Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem3 Structured version   Visualization version   GIF version

Theorem smfmullem3 43075
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem3.r (𝜑𝑅 ∈ ℝ)
smfmullem3.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem3.u (𝜑𝑈 ∈ ℝ)
smfmullem3.v (𝜑𝑉 ∈ ℝ)
smfmullem3.l (𝜑 → (𝑈 · 𝑉) < 𝑅)
smfmullem3.x 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem3.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
Assertion
Ref Expression
smfmullem3 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Distinct variable groups:   𝑅,𝑞   𝑈,𝑞,𝑢,𝑣   𝑉,𝑞,𝑢,𝑣   𝑢,𝑌,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑣,𝑢)   𝐾(𝑣,𝑢,𝑞)   𝑋(𝑣,𝑢,𝑞)   𝑌(𝑞)

Proof of Theorem smfmullem3
Dummy variables 𝑝 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmullem3.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 smfmullem3.y . . . . . . . 8 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
32a1i 11 . . . . . . 7 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
4 1rp 12396 . . . . . . . . 9 1 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
6 smfmullem3.x . . . . . . . . . 10 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
76a1i 11 . . . . . . . . 9 (𝜑𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8 smfmullem3.l . . . . . . . . . . 11 (𝜑 → (𝑈 · 𝑉) < 𝑅)
9 smfmullem3.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
101, 9remulcld 10674 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
11 smfmullem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
12 difrp 12430 . . . . . . . . . . . 12 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
1310, 11, 12syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
148, 13mpbid 234 . . . . . . . . . 10 (𝜑 → (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+)
15 1re 10644 . . . . . . . . . . . . 13 1 ∈ ℝ
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
171recnd 10672 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂ)
1817abscld 14799 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑈) ∈ ℝ)
199recnd 10672 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℂ)
2019abscld 14799 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑉) ∈ ℝ)
2118, 20readdcld 10673 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
2216, 21readdcld 10673 . . . . . . . . . . 11 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
23 0re 10646 . . . . . . . . . . . . 13 0 ∈ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
255rpgt0d 12437 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
26 0red 10647 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
2717absge0d 14807 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (abs‘𝑈))
2819absge0d 14807 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (abs‘𝑉))
2918, 20addge01d 11231 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
3028, 29mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
3126, 18, 21, 27, 30letrd 10800 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
3216, 21addge01d 11231 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
3331, 32mpbid 234 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
3424, 16, 22, 25, 33ltletrd 10803 . . . . . . . . . . 11 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
3522, 34elrpd 12431 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
3614, 35rpdivcld 12451 . . . . . . . . 9 (𝜑 → ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
377, 36eqeltrd 2916 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
385, 37ifcld 4515 . . . . . . 7 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
393, 38eqeltrd 2916 . . . . . 6 (𝜑𝑌 ∈ ℝ+)
4039rpred 12434 . . . . 5 (𝜑𝑌 ∈ ℝ)
411, 40resubcld 11071 . . . 4 (𝜑 → (𝑈𝑌) ∈ ℝ)
4241rexrd 10694 . . 3 (𝜑 → (𝑈𝑌) ∈ ℝ*)
431rexrd 10694 . . 3 (𝜑𝑈 ∈ ℝ*)
441, 39ltsubrpd 12466 . . 3 (𝜑 → (𝑈𝑌) < 𝑈)
4542, 43, 44qelioo 41828 . 2 (𝜑 → ∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
461, 40readdcld 10673 . . . . . . 7 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
4746rexrd 10694 . . . . . 6 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
481, 39ltaddrpd 12467 . . . . . 6 (𝜑𝑈 < (𝑈 + 𝑌))
4943, 47, 48qelioo 41828 . . . . 5 (𝜑 → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
5049ad2antrr 724 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
51 simp-4l 781 . . . . . . 7 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝜑)
529, 40resubcld 11071 . . . . . . . . 9 (𝜑 → (𝑉𝑌) ∈ ℝ)
5352rexrd 10694 . . . . . . . 8 (𝜑 → (𝑉𝑌) ∈ ℝ*)
549rexrd 10694 . . . . . . . 8 (𝜑𝑉 ∈ ℝ*)
559, 39ltsubrpd 12466 . . . . . . . 8 (𝜑 → (𝑉𝑌) < 𝑉)
5653, 54, 55qelioo 41828 . . . . . . 7 (𝜑 → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5751, 56syl 17 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5851ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → 𝜑)
599, 40readdcld 10673 . . . . . . . . . . 11 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
6059rexrd 10694 . . . . . . . . . 10 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
619, 39ltaddrpd 12467 . . . . . . . . . 10 (𝜑𝑉 < (𝑉 + 𝑌))
6254, 60, 61qelioo 41828 . . . . . . . . 9 (𝜑 → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6358, 62syl 17 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6411ad8antr 738 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑅 ∈ ℝ)
65 smfmullem3.k . . . . . . . . . 10 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
661ad8antr 738 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑈 ∈ ℝ)
679ad8antr 738 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 ∈ ℝ)
688ad8antr 738 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → (𝑈 · 𝑉) < 𝑅)
69 simp-8r 790 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ℚ)
70 simp-6r 786 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ ℚ)
71 simp-4r 782 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ℚ)
72 simplr 767 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ ℚ)
73 simp-7r 788 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
74 simp-5r 784 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
75 simpllr 774 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
76 simpr 487 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
7764, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 6, 2smfmullem2 43074 . . . . . . . . 9 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
7877rexlimdva2 3290 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → (∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
7963, 78mpd 15 . . . . . . 7 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8079rexlimdva2 3290 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → (∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8157, 80mpd 15 . . . . 5 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8281rexlimdva2 3290 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → (∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8350, 82mpd 15 . . 3 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8483rexlimdva2 3290 . 2 (𝜑 → (∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8545, 84mpd 15 1 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  ifcif 4470   class class class wbr 5069  cfv 6358  (class class class)co 7159  m cmap 8409  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  2c2 11695  3c3 11696  cq 12351  +crp 12392  (,)cioo 12741  ...cfz 12895  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-s4 14215  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  smfmullem4  43076
  Copyright terms: Public domain W3C validator