Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem3 Structured version   Visualization version   GIF version

Theorem smfmullem3 46808
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem3.r (𝜑𝑅 ∈ ℝ)
smfmullem3.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem3.u (𝜑𝑈 ∈ ℝ)
smfmullem3.v (𝜑𝑉 ∈ ℝ)
smfmullem3.l (𝜑 → (𝑈 · 𝑉) < 𝑅)
smfmullem3.x 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem3.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
Assertion
Ref Expression
smfmullem3 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Distinct variable groups:   𝑅,𝑞   𝑈,𝑞,𝑢,𝑣   𝑉,𝑞,𝑢,𝑣   𝑢,𝑌,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑣,𝑢)   𝐾(𝑣,𝑢,𝑞)   𝑋(𝑣,𝑢,𝑞)   𝑌(𝑞)

Proof of Theorem smfmullem3
Dummy variables 𝑝 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmullem3.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 smfmullem3.y . . . . . . . 8 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
32a1i 11 . . . . . . 7 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
4 1rp 13038 . . . . . . . . 9 1 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
6 smfmullem3.x . . . . . . . . . 10 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
76a1i 11 . . . . . . . . 9 (𝜑𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8 smfmullem3.l . . . . . . . . . . 11 (𝜑 → (𝑈 · 𝑉) < 𝑅)
9 smfmullem3.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
101, 9remulcld 11291 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
11 smfmullem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
12 difrp 13073 . . . . . . . . . . . 12 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
1310, 11, 12syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
148, 13mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+)
15 1re 11261 . . . . . . . . . . . . 13 1 ∈ ℝ
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
171recnd 11289 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂ)
1817abscld 15475 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑈) ∈ ℝ)
199recnd 11289 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℂ)
2019abscld 15475 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑉) ∈ ℝ)
2118, 20readdcld 11290 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
2216, 21readdcld 11290 . . . . . . . . . . 11 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
23 0re 11263 . . . . . . . . . . . . 13 0 ∈ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
255rpgt0d 13080 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
26 0red 11264 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
2717absge0d 15483 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (abs‘𝑈))
2819absge0d 15483 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (abs‘𝑉))
2918, 20addge01d 11851 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
3028, 29mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
3126, 18, 21, 27, 30letrd 11418 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
3216, 21addge01d 11851 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
3331, 32mpbid 232 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
3424, 16, 22, 25, 33ltletrd 11421 . . . . . . . . . . 11 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
3522, 34elrpd 13074 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
3614, 35rpdivcld 13094 . . . . . . . . 9 (𝜑 → ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
377, 36eqeltrd 2841 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
385, 37ifcld 4572 . . . . . . 7 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
393, 38eqeltrd 2841 . . . . . 6 (𝜑𝑌 ∈ ℝ+)
4039rpred 13077 . . . . 5 (𝜑𝑌 ∈ ℝ)
411, 40resubcld 11691 . . . 4 (𝜑 → (𝑈𝑌) ∈ ℝ)
4241rexrd 11311 . . 3 (𝜑 → (𝑈𝑌) ∈ ℝ*)
431rexrd 11311 . . 3 (𝜑𝑈 ∈ ℝ*)
441, 39ltsubrpd 13109 . . 3 (𝜑 → (𝑈𝑌) < 𝑈)
4542, 43, 44qelioo 45559 . 2 (𝜑 → ∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
461, 40readdcld 11290 . . . . . . 7 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
4746rexrd 11311 . . . . . 6 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
481, 39ltaddrpd 13110 . . . . . 6 (𝜑𝑈 < (𝑈 + 𝑌))
4943, 47, 48qelioo 45559 . . . . 5 (𝜑 → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
5049ad2antrr 726 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
51 simp-4l 783 . . . . . . 7 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝜑)
529, 40resubcld 11691 . . . . . . . . 9 (𝜑 → (𝑉𝑌) ∈ ℝ)
5352rexrd 11311 . . . . . . . 8 (𝜑 → (𝑉𝑌) ∈ ℝ*)
549rexrd 11311 . . . . . . . 8 (𝜑𝑉 ∈ ℝ*)
559, 39ltsubrpd 13109 . . . . . . . 8 (𝜑 → (𝑉𝑌) < 𝑉)
5653, 54, 55qelioo 45559 . . . . . . 7 (𝜑 → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5751, 56syl 17 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5851ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → 𝜑)
599, 40readdcld 11290 . . . . . . . . . . 11 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
6059rexrd 11311 . . . . . . . . . 10 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
619, 39ltaddrpd 13110 . . . . . . . . . 10 (𝜑𝑉 < (𝑉 + 𝑌))
6254, 60, 61qelioo 45559 . . . . . . . . 9 (𝜑 → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6358, 62syl 17 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6411ad8antr 740 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑅 ∈ ℝ)
65 smfmullem3.k . . . . . . . . . 10 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
661ad8antr 740 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑈 ∈ ℝ)
679ad8antr 740 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 ∈ ℝ)
688ad8antr 740 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → (𝑈 · 𝑉) < 𝑅)
69 simp-8r 792 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ℚ)
70 simp-6r 788 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ ℚ)
71 simp-4r 784 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ℚ)
72 simplr 769 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ ℚ)
73 simp-7r 790 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
74 simp-5r 786 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
75 simpllr 776 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
76 simpr 484 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
7764, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 6, 2smfmullem2 46807 . . . . . . . . 9 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
7877rexlimdva2 3157 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → (∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
7963, 78mpd 15 . . . . . . 7 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8079rexlimdva2 3157 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → (∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8157, 80mpd 15 . . . . 5 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8281rexlimdva2 3157 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → (∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8350, 82mpd 15 . . 3 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8483rexlimdva2 3157 . 2 (𝜑 → (∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8545, 84mpd 15 1 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  m cmap 8866  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  3c3 12322  cq 12990  +crp 13034  (,)cioo 13387  ...cfz 13547  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-s4 14889  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  smfmullem4  46809
  Copyright terms: Public domain W3C validator