Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem3 Structured version   Visualization version   GIF version

Theorem smfmullem3 44327
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem3.r (𝜑𝑅 ∈ ℝ)
smfmullem3.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem3.u (𝜑𝑈 ∈ ℝ)
smfmullem3.v (𝜑𝑉 ∈ ℝ)
smfmullem3.l (𝜑 → (𝑈 · 𝑉) < 𝑅)
smfmullem3.x 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem3.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
Assertion
Ref Expression
smfmullem3 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Distinct variable groups:   𝑅,𝑞   𝑈,𝑞,𝑢,𝑣   𝑉,𝑞,𝑢,𝑣   𝑢,𝑌,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑣,𝑢)   𝐾(𝑣,𝑢,𝑞)   𝑋(𝑣,𝑢,𝑞)   𝑌(𝑞)

Proof of Theorem smfmullem3
Dummy variables 𝑝 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmullem3.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 smfmullem3.y . . . . . . . 8 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
32a1i 11 . . . . . . 7 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
4 1rp 12734 . . . . . . . . 9 1 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
6 smfmullem3.x . . . . . . . . . 10 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
76a1i 11 . . . . . . . . 9 (𝜑𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8 smfmullem3.l . . . . . . . . . . 11 (𝜑 → (𝑈 · 𝑉) < 𝑅)
9 smfmullem3.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
101, 9remulcld 11005 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
11 smfmullem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
12 difrp 12768 . . . . . . . . . . . 12 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
1310, 11, 12syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
148, 13mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+)
15 1re 10975 . . . . . . . . . . . . 13 1 ∈ ℝ
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
171recnd 11003 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂ)
1817abscld 15148 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑈) ∈ ℝ)
199recnd 11003 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℂ)
2019abscld 15148 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑉) ∈ ℝ)
2118, 20readdcld 11004 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
2216, 21readdcld 11004 . . . . . . . . . . 11 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
23 0re 10977 . . . . . . . . . . . . 13 0 ∈ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
255rpgt0d 12775 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
26 0red 10978 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
2717absge0d 15156 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (abs‘𝑈))
2819absge0d 15156 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (abs‘𝑉))
2918, 20addge01d 11563 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
3028, 29mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
3126, 18, 21, 27, 30letrd 11132 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
3216, 21addge01d 11563 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
3331, 32mpbid 231 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
3424, 16, 22, 25, 33ltletrd 11135 . . . . . . . . . . 11 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
3522, 34elrpd 12769 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
3614, 35rpdivcld 12789 . . . . . . . . 9 (𝜑 → ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
377, 36eqeltrd 2839 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
385, 37ifcld 4505 . . . . . . 7 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
393, 38eqeltrd 2839 . . . . . 6 (𝜑𝑌 ∈ ℝ+)
4039rpred 12772 . . . . 5 (𝜑𝑌 ∈ ℝ)
411, 40resubcld 11403 . . . 4 (𝜑 → (𝑈𝑌) ∈ ℝ)
4241rexrd 11025 . . 3 (𝜑 → (𝑈𝑌) ∈ ℝ*)
431rexrd 11025 . . 3 (𝜑𝑈 ∈ ℝ*)
441, 39ltsubrpd 12804 . . 3 (𝜑 → (𝑈𝑌) < 𝑈)
4542, 43, 44qelioo 43084 . 2 (𝜑 → ∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
461, 40readdcld 11004 . . . . . . 7 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
4746rexrd 11025 . . . . . 6 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
481, 39ltaddrpd 12805 . . . . . 6 (𝜑𝑈 < (𝑈 + 𝑌))
4943, 47, 48qelioo 43084 . . . . 5 (𝜑 → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
5049ad2antrr 723 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
51 simp-4l 780 . . . . . . 7 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝜑)
529, 40resubcld 11403 . . . . . . . . 9 (𝜑 → (𝑉𝑌) ∈ ℝ)
5352rexrd 11025 . . . . . . . 8 (𝜑 → (𝑉𝑌) ∈ ℝ*)
549rexrd 11025 . . . . . . . 8 (𝜑𝑉 ∈ ℝ*)
559, 39ltsubrpd 12804 . . . . . . . 8 (𝜑 → (𝑉𝑌) < 𝑉)
5653, 54, 55qelioo 43084 . . . . . . 7 (𝜑 → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5751, 56syl 17 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5851ad2antrr 723 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → 𝜑)
599, 40readdcld 11004 . . . . . . . . . . 11 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
6059rexrd 11025 . . . . . . . . . 10 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
619, 39ltaddrpd 12805 . . . . . . . . . 10 (𝜑𝑉 < (𝑉 + 𝑌))
6254, 60, 61qelioo 43084 . . . . . . . . 9 (𝜑 → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6358, 62syl 17 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6411ad8antr 737 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑅 ∈ ℝ)
65 smfmullem3.k . . . . . . . . . 10 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
661ad8antr 737 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑈 ∈ ℝ)
679ad8antr 737 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 ∈ ℝ)
688ad8antr 737 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → (𝑈 · 𝑉) < 𝑅)
69 simp-8r 789 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ℚ)
70 simp-6r 785 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ ℚ)
71 simp-4r 781 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ℚ)
72 simplr 766 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ ℚ)
73 simp-7r 787 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
74 simp-5r 783 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
75 simpllr 773 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
76 simpr 485 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
7764, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 6, 2smfmullem2 44326 . . . . . . . . 9 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
7877rexlimdva2 3216 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → (∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
7963, 78mpd 15 . . . . . . 7 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8079rexlimdva2 3216 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → (∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8157, 80mpd 15 . . . . 5 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8281rexlimdva2 3216 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → (∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8350, 82mpd 15 . . 3 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8483rexlimdva2 3216 . 2 (𝜑 → (∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8545, 84mpd 15 1 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  m cmap 8615  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  3c3 12029  cq 12688  +crp 12730  (,)cioo 13079  ...cfz 13239  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-s4 14563  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  smfmullem4  44328
  Copyright terms: Public domain W3C validator