Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem3 Structured version   Visualization version   GIF version

Theorem smfmullem3 44214
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem3.r (𝜑𝑅 ∈ ℝ)
smfmullem3.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem3.u (𝜑𝑈 ∈ ℝ)
smfmullem3.v (𝜑𝑉 ∈ ℝ)
smfmullem3.l (𝜑 → (𝑈 · 𝑉) < 𝑅)
smfmullem3.x 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem3.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
Assertion
Ref Expression
smfmullem3 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Distinct variable groups:   𝑅,𝑞   𝑈,𝑞,𝑢,𝑣   𝑉,𝑞,𝑢,𝑣   𝑢,𝑌,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑣,𝑢)   𝐾(𝑣,𝑢,𝑞)   𝑋(𝑣,𝑢,𝑞)   𝑌(𝑞)

Proof of Theorem smfmullem3
Dummy variables 𝑝 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmullem3.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 smfmullem3.y . . . . . . . 8 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
32a1i 11 . . . . . . 7 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
4 1rp 12663 . . . . . . . . 9 1 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
6 smfmullem3.x . . . . . . . . . 10 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
76a1i 11 . . . . . . . . 9 (𝜑𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8 smfmullem3.l . . . . . . . . . . 11 (𝜑 → (𝑈 · 𝑉) < 𝑅)
9 smfmullem3.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
101, 9remulcld 10936 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
11 smfmullem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
12 difrp 12697 . . . . . . . . . . . 12 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
1310, 11, 12syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
148, 13mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+)
15 1re 10906 . . . . . . . . . . . . 13 1 ∈ ℝ
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
171recnd 10934 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂ)
1817abscld 15076 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑈) ∈ ℝ)
199recnd 10934 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℂ)
2019abscld 15076 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑉) ∈ ℝ)
2118, 20readdcld 10935 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
2216, 21readdcld 10935 . . . . . . . . . . 11 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
23 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
255rpgt0d 12704 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
26 0red 10909 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
2717absge0d 15084 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (abs‘𝑈))
2819absge0d 15084 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (abs‘𝑉))
2918, 20addge01d 11493 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
3028, 29mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
3126, 18, 21, 27, 30letrd 11062 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
3216, 21addge01d 11493 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
3331, 32mpbid 231 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
3424, 16, 22, 25, 33ltletrd 11065 . . . . . . . . . . 11 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
3522, 34elrpd 12698 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
3614, 35rpdivcld 12718 . . . . . . . . 9 (𝜑 → ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
377, 36eqeltrd 2839 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
385, 37ifcld 4502 . . . . . . 7 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
393, 38eqeltrd 2839 . . . . . 6 (𝜑𝑌 ∈ ℝ+)
4039rpred 12701 . . . . 5 (𝜑𝑌 ∈ ℝ)
411, 40resubcld 11333 . . . 4 (𝜑 → (𝑈𝑌) ∈ ℝ)
4241rexrd 10956 . . 3 (𝜑 → (𝑈𝑌) ∈ ℝ*)
431rexrd 10956 . . 3 (𝜑𝑈 ∈ ℝ*)
441, 39ltsubrpd 12733 . . 3 (𝜑 → (𝑈𝑌) < 𝑈)
4542, 43, 44qelioo 42974 . 2 (𝜑 → ∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
461, 40readdcld 10935 . . . . . . 7 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
4746rexrd 10956 . . . . . 6 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
481, 39ltaddrpd 12734 . . . . . 6 (𝜑𝑈 < (𝑈 + 𝑌))
4943, 47, 48qelioo 42974 . . . . 5 (𝜑 → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
5049ad2antrr 722 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
51 simp-4l 779 . . . . . . 7 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝜑)
529, 40resubcld 11333 . . . . . . . . 9 (𝜑 → (𝑉𝑌) ∈ ℝ)
5352rexrd 10956 . . . . . . . 8 (𝜑 → (𝑉𝑌) ∈ ℝ*)
549rexrd 10956 . . . . . . . 8 (𝜑𝑉 ∈ ℝ*)
559, 39ltsubrpd 12733 . . . . . . . 8 (𝜑 → (𝑉𝑌) < 𝑉)
5653, 54, 55qelioo 42974 . . . . . . 7 (𝜑 → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5751, 56syl 17 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5851ad2antrr 722 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → 𝜑)
599, 40readdcld 10935 . . . . . . . . . . 11 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
6059rexrd 10956 . . . . . . . . . 10 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
619, 39ltaddrpd 12734 . . . . . . . . . 10 (𝜑𝑉 < (𝑉 + 𝑌))
6254, 60, 61qelioo 42974 . . . . . . . . 9 (𝜑 → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6358, 62syl 17 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6411ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑅 ∈ ℝ)
65 smfmullem3.k . . . . . . . . . 10 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
661ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑈 ∈ ℝ)
679ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 ∈ ℝ)
688ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → (𝑈 · 𝑉) < 𝑅)
69 simp-8r 788 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ℚ)
70 simp-6r 784 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ ℚ)
71 simp-4r 780 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ℚ)
72 simplr 765 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ ℚ)
73 simp-7r 786 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
74 simp-5r 782 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
75 simpllr 772 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
76 simpr 484 . . . . . . . . . 10 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
7764, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 6, 2smfmullem2 44213 . . . . . . . . 9 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
7877rexlimdva2 3215 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → (∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
7963, 78mpd 15 . . . . . . 7 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8079rexlimdva2 3215 . . . . . 6 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → (∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8157, 80mpd 15 . . . . 5 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8281rexlimdva2 3215 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → (∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8350, 82mpd 15 . . 3 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8483rexlimdva2 3215 . 2 (𝜑 → (∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8545, 84mpd 15 1 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  3c3 11959  cq 12617  +crp 12659  (,)cioo 13008  ...cfz 13168  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-s4 14491  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  smfmullem4  44215
  Copyright terms: Public domain W3C validator