Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtophaus Structured version   Visualization version   GIF version

Theorem qtophaus 31688
Description: If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
Hypotheses
Ref Expression
qtophaus.x 𝑋 = 𝐽
qtophaus.e = (𝐹𝐹)
qtophaus.h 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
qtophaus.1 (𝜑𝐽 ∈ Haus)
qtophaus.2 (𝜑𝐹:𝑋onto𝑌)
qtophaus.3 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
qtophaus.4 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
Assertion
Ref Expression
qtophaus (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem qtophaus
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtophaus.1 . . . 4 (𝜑𝐽 ∈ Haus)
2 haustop 22390 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtophaus.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6674 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtophaus.x . . . 4 𝑋 = 𝐽
87qtoptop 22759 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 583 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 txtop 22628 . . . 4 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
119, 9, 10syl2anc 583 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
12 idssxp 5945 . . . 4 ( I ↾ (𝐽 qTop 𝐹)) ⊆ ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹))
13 eqid 2738 . . . . . 6 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
1413, 13txuni 22651 . . . . 5 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159, 9, 14syl2anc 583 . . . 4 (𝜑 → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
1612, 15sseqtrid 3969 . . 3 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
177qtopuni 22761 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
183, 4, 17syl2anc 583 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1918sqxpeqd 5612 . . . . . 6 (𝜑 → (𝑌 × 𝑌) = ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)))
2019, 15eqtr2d 2779 . . . . 5 (𝜑 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = (𝑌 × 𝑌))
2118eqcomd 2744 . . . . . 6 (𝜑 (𝐽 qTop 𝐹) = 𝑌)
2221reseq2d 5880 . . . . 5 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) = ( I ↾ 𝑌))
2320, 22difeq12d 4054 . . . 4 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
24 qtophaus.h . . . . . . . . . 10 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
25 opex 5373 . . . . . . . . . 10 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
2624, 25fnmpoi 7883 . . . . . . . . 9 𝐻 Fn (𝑋 × 𝑋)
27 difss 4062 . . . . . . . . 9 ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)
28 fvelimab 6823 . . . . . . . . 9 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
2926, 27, 28mp2an 688 . . . . . . . 8 (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
30 simp-4r 780 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥𝑋)
31 simplr 765 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑦𝑋)
32 opelxpi 5617 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3330, 31, 32syl2anc 583 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
34 df-br 5071 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × 𝑋)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3533, 34sylibr 233 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦)
36 simpllr 772 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) = 𝑎)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑦) = 𝑏)
3836, 37opeq12d 4809 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨𝑎, 𝑏⟩)
39 simp-5r 782 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 = ⟨𝑎, 𝑏⟩)
40 simp-8r 788 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
4139, 40eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑎, 𝑏⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
4238, 41eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
43 relxp 5598 . . . . . . . . . . . . . . . . . 18 Rel (𝑌 × 𝑌)
44 opeldifid 30839 . . . . . . . . . . . . . . . . . 18 (Rel (𝑌 × 𝑌) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦))))
4543, 44ax-mp 5 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4642, 45sylib 217 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4746simprd 495 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) ≠ (𝐹𝑦))
486ad8antr 736 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝐹 Fn 𝑋)
49 qtophaus.e . . . . . . . . . . . . . . . . . 18 = (𝐹𝐹)
5049fcoinvbr 30848 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5148, 30, 31, 50syl3anc 1369 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5251necon3bbid 2980 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
5347, 52mpbird 256 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ¬ 𝑥 𝑦)
54 df-br 5071 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
55 brdif 5123 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5654, 55bitr3i 276 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5735, 53, 56sylanbrc 582 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
5824, 30, 31fvproj 7946 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5938, 58, 393eqtr4d 2788 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐)
60 fveqeq2 6765 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) = 𝑐 ↔ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐))
6160rspcev 3552 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ∧ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
6257, 59, 61syl2anc 583 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
63 fofun 6673 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌 → Fun 𝐹)
644, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐹)
6564ad4antr 728 . . . . . . . . . . . . . 14 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → Fun 𝐹)
6665ad2antrr 722 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → Fun 𝐹)
67 simp-4r 780 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏𝑌)
68 foima 6677 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
694, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑋) = 𝑌)
7069ad4antr 728 . . . . . . . . . . . . . . 15 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → (𝐹𝑋) = 𝑌)
7170ad2antrr 722 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → (𝐹𝑋) = 𝑌)
7267, 71eleqtrrd 2842 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏 ∈ (𝐹𝑋))
73 fvelima 6817 . . . . . . . . . . . . 13 ((Fun 𝐹𝑏 ∈ (𝐹𝑋)) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7466, 72, 73syl2anc 583 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7562, 74r19.29a 3217 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
76 simpllr 772 . . . . . . . . . . . . 13 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎𝑌)
7776, 70eleqtrrd 2842 . . . . . . . . . . . 12 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎 ∈ (𝐹𝑋))
78 fvelima 6817 . . . . . . . . . . . 12 ((Fun 𝐹𝑎 ∈ (𝐹𝑋)) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7965, 77, 78syl2anc 583 . . . . . . . . . . 11 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
8075, 79r19.29a 3217 . . . . . . . . . 10 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
81 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
8281eldifad 3895 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌))
83 elxp2 5604 . . . . . . . . . . 11 (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8482, 83sylib 217 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8580, 84r19.29vva 3263 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
86 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 = ⟨𝑥, 𝑦⟩)
8786fveq2d 6760 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
88 simp-4r 780 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = 𝑐)
89 simpllr 772 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑥𝑋)
90 simplr 765 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑦𝑋)
9124, 89, 90fvproj 7946 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
9287, 88, 913eqtr3d 2786 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
93 fof 6672 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
944, 93syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋𝑌)
9594ad5antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹:𝑋𝑌)
9695, 89ffvelrnd 6944 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ∈ 𝑌)
9795, 90ffvelrnd 6944 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) ∈ 𝑌)
98 opelxp 5616 . . . . . . . . . . . . . 14 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ↔ ((𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌))
9996, 97, 98sylanbrc 582 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌))
100 simp-5r 782 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ))
10186, 100eqeltrrd 2840 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
10256simprbi 496 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) → ¬ 𝑥 𝑦)
103101, 102syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ¬ 𝑥 𝑦)
1046ad5antr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹 Fn 𝑋)
105104, 89, 90, 50syl3anc 1369 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
106105necon3bbid 2980 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
107103, 106mpbid 231 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ≠ (𝐹𝑦))
10899, 107, 45sylanbrc 582 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
10992, 108eqeltrd 2839 . . . . . . . . . . 11 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
110 eldifi 4057 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋 × 𝑋) ∖ ) → 𝑧 ∈ (𝑋 × 𝑋))
111110adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → 𝑧 ∈ (𝑋 × 𝑋))
112 elxp2 5604 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
113111, 112sylib 217 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
114113adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
115109, 114r19.29vva 3263 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
116115r19.29an 3216 . . . . . . . . 9 ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
11785, 116impbida 797 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
11829, 117bitr4id 289 . . . . . . 7 (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )))
119118eqrdv 2736 . . . . . 6 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ I ))
120 ssv 3941 . . . . . . 7 𝑌 ⊆ V
121 xpss2 5600 . . . . . . 7 (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V))
122 difres 30840 . . . . . . 7 ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ))
123120, 121, 122mp2b 10 . . . . . 6 ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )
124119, 123eqtr4di 2797 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
1257toptopon 21974 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1263, 125sylib 217 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
127 qtoptopon 22763 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
128126, 4, 127syl2anc 583 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
129 qtophaus.3 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
130129ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
131 imaeq2 5954 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
132131eleq1d 2823 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝑦) ∈ (𝐽 qTop 𝐹)))
133132cbvralvw 3372 . . . . . . . 8 (∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
134130, 133sylib 217 . . . . . . 7 (𝜑 → ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
135134r19.21bi 3132 . . . . . 6 ((𝜑𝑦𝐽) → (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
1367, 7txuni 22651 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1373, 3, 136syl2anc 583 . . . . . . . 8 (𝜑 → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
138137difeq1d 4052 . . . . . . 7 (𝜑 → ((𝑋 × 𝑋) ∖ ) = ( (𝐽 ×t 𝐽) ∖ ))
139 qtophaus.4 . . . . . . . 8 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
140 txtop 22628 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
1413, 3, 140syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐽) ∈ Top)
142 fcoinver 30847 . . . . . . . . . . . . 13 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
1436, 142syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐹) Er 𝑋)
144 ereq1 8463 . . . . . . . . . . . . 13 ( = (𝐹𝐹) → ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋))
14549, 144ax-mp 5 . . . . . . . . . . . 12 ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋)
146143, 145sylibr 233 . . . . . . . . . . 11 (𝜑 Er 𝑋)
147 erssxp 8479 . . . . . . . . . . 11 ( Er 𝑋 ⊆ (𝑋 × 𝑋))
148146, 147syl 17 . . . . . . . . . 10 (𝜑 ⊆ (𝑋 × 𝑋))
149148, 137sseqtrd 3957 . . . . . . . . 9 (𝜑 (𝐽 ×t 𝐽))
150 eqid 2738 . . . . . . . . . 10 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
151150iscld2 22087 . . . . . . . . 9 (((𝐽 ×t 𝐽) ∈ Top ∧ (𝐽 ×t 𝐽)) → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
152141, 149, 151syl2anc 583 . . . . . . . 8 (𝜑 → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
153139, 152mpbid 231 . . . . . . 7 (𝜑 → ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽))
154138, 153eqeltrd 2839 . . . . . 6 (𝜑 → ((𝑋 × 𝑋) ∖ ) ∈ (𝐽 ×t 𝐽))
15594, 94, 126, 126, 128, 128, 129, 135, 154, 24txomap 31686 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
156124, 155eqeltrrd 2840 . . . 4 (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
15723, 156eqeltrd 2839 . . 3 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
158 eqid 2738 . . . . 5 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))
159158iscld2 22087 . . . 4 ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → (( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
160159biimpar 477 . . 3 (((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ∧ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16111, 16, 157, 160syl21anc 834 . 2 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16213hausdiag 22704 . 2 ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))))
1639, 161, 162sylanbrc 582 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  cop 4564   cuni 4836   class class class wbr 5070   I cid 5479   × cxp 5578  ccnv 5579  cres 5582  cima 5583  ccom 5584  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257   Er wer 8453   qTop cqtop 17131  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  Hauscha 22367   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-topgen 17071  df-qtop 17135  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-haus 22374  df-tx 22621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator