Step | Hyp | Ref
| Expression |
1 | | qtophaus.1 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Haus) |
2 | | haustop 21623 |
. . . 4
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Top) |
4 | | qtophaus.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
5 | | fofn 6460 |
. . . 4
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | | qtophaus.x |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
8 | 7 | qtoptop 21992 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
9 | 3, 6, 8 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
10 | | txtop 21861 |
. . . 4
⊢ (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top) |
11 | 9, 9, 10 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top) |
12 | | idssxp 5796 |
. . . 4
⊢ ( I
↾ ∪ (𝐽 qTop 𝐹)) ⊆ (∪
(𝐽 qTop 𝐹) × ∪
(𝐽 qTop 𝐹)) |
13 | | eqid 2795 |
. . . . . 6
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) |
14 | 13, 13 | txuni 21884 |
. . . . 5
⊢ (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → (∪ (𝐽
qTop 𝐹) × ∪ (𝐽
qTop 𝐹)) = ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹))) |
15 | 9, 9, 14 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (∪ (𝐽
qTop 𝐹) × ∪ (𝐽
qTop 𝐹)) = ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹))) |
16 | 12, 15 | sseqtrid 3940 |
. . 3
⊢ (𝜑 → ( I ↾ ∪ (𝐽
qTop 𝐹)) ⊆ ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹))) |
17 | 7 | qtopuni 21994 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
18 | 3, 4, 17 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
19 | 18 | sqxpeqd 5475 |
. . . . . 6
⊢ (𝜑 → (𝑌 × 𝑌) = (∪ (𝐽 qTop 𝐹) × ∪
(𝐽 qTop 𝐹))) |
20 | 19, 15 | eqtr2d 2832 |
. . . . 5
⊢ (𝜑 → ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹)) = (𝑌 × 𝑌)) |
21 | 18 | eqcomd 2801 |
. . . . . 6
⊢ (𝜑 → ∪ (𝐽
qTop 𝐹) = 𝑌) |
22 | 21 | reseq2d 5734 |
. . . . 5
⊢ (𝜑 → ( I ↾ ∪ (𝐽
qTop 𝐹)) = ( I ↾
𝑌)) |
23 | 20, 22 | difeq12d 4021 |
. . . 4
⊢ (𝜑 → (∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹)) ∖ ( I ↾ ∪ (𝐽
qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌))) |
24 | | simp-4r 780 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝑥 ∈ 𝑋) |
25 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝑦 ∈ 𝑋) |
26 | | opelxpi 5480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋)) |
27 | 24, 25, 26 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋)) |
28 | | df-br 4963 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(𝑋 × 𝑋)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋)) |
29 | 27, 28 | sylibr 235 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦) |
30 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝐹‘𝑥) = 𝑎) |
31 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝐹‘𝑦) = 𝑏) |
32 | 30, 31 | opeq12d 4718 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 = 〈𝑎, 𝑏〉) |
33 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝑐 = 〈𝑎, 𝑏〉) |
34 | | simp-8r 788 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) |
35 | 33, 34 | eqeltrrd 2884 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 〈𝑎, 𝑏〉 ∈ ((𝑌 × 𝑌) ∖ I )) |
36 | 32, 35 | eqeltrd 2883 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ ((𝑌 × 𝑌) ∖ I )) |
37 | | relxp 5461 |
. . . . . . . . . . . . . . . . . 18
⊢ Rel
(𝑌 × 𝑌) |
38 | | opeldifid 30039 |
. . . . . . . . . . . . . . . . . 18
⊢ (Rel
(𝑌 × 𝑌) → (〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ (𝑌 × 𝑌) ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ (𝑌 × 𝑌) ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
40 | 36, 39 | sylib 219 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ (𝑌 × 𝑌) ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
41 | 40 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
42 | 6 | ad8antr 736 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 𝐹 Fn 𝑋) |
43 | | qtophaus.e |
. . . . . . . . . . . . . . . . . 18
⊢ ∼ =
(◡𝐹 ∘ 𝐹) |
44 | 43 | fcoinvbr 30048 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥 ∼ 𝑦 ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
45 | 42, 24, 25, 44 | syl3anc 1364 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝑥 ∼ 𝑦 ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
46 | 45 | necon3bbid 3021 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (¬ 𝑥 ∼ 𝑦 ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
47 | 41, 46 | mpbird 258 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → ¬ 𝑥 ∼ 𝑦) |
48 | | df-br 4963 |
. . . . . . . . . . . . . . 15
⊢ (𝑥((𝑋 × 𝑋) ∖ ∼ )𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ )) |
49 | | brdif 5015 |
. . . . . . . . . . . . . . 15
⊢ (𝑥((𝑋 × 𝑋) ∖ ∼ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 ∼ 𝑦)) |
50 | 48, 49 | bitr3i 278 |
. . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 ∼ 𝑦)) |
51 | 29, 47, 50 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → 〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ )) |
52 | | qtophaus.h |
. . . . . . . . . . . . . . 15
⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
53 | 52, 24, 25 | fvproj 30713 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝐻‘〈𝑥, 𝑦〉) = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
54 | 32, 53, 33 | 3eqtr4d 2841 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → (𝐻‘〈𝑥, 𝑦〉) = 𝑐) |
55 | | fveqeq2 6547 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐻‘𝑧) = 𝑐 ↔ (𝐻‘〈𝑥, 𝑦〉) = 𝑐)) |
56 | 55 | rspcev 3559 |
. . . . . . . . . . . . 13
⊢
((〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ ) ∧ (𝐻‘〈𝑥, 𝑦〉) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
57 | 51, 54, 56 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
58 | | fofun 6459 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋–onto→𝑌 → Fun 𝐹) |
59 | 4, 58 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐹) |
60 | 59 | ad4antr 728 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → Fun 𝐹) |
61 | 60 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → Fun 𝐹) |
62 | | simp-4r 780 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → 𝑏 ∈ 𝑌) |
63 | | foima 6463 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋–onto→𝑌 → (𝐹 “ 𝑋) = 𝑌) |
64 | 4, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 “ 𝑋) = 𝑌) |
65 | 64 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → (𝐹 “ 𝑋) = 𝑌) |
66 | 65 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → (𝐹 “ 𝑋) = 𝑌) |
67 | 62, 66 | eleqtrrd 2886 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → 𝑏 ∈ (𝐹 “ 𝑋)) |
68 | | fvelima 6599 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑏 ∈ (𝐹 “ 𝑋)) → ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = 𝑏) |
69 | 61, 67, 68 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = 𝑏) |
70 | 57, 69 | r19.29a 3252 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
71 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → 𝑎 ∈ 𝑌) |
72 | 71, 65 | eleqtrrd 2886 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → 𝑎 ∈ (𝐹 “ 𝑋)) |
73 | | fvelima 6599 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑎 ∈ (𝐹 “ 𝑋)) → ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑎) |
74 | 60, 72, 73 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑎) |
75 | 70, 74 | r19.29a 3252 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎 ∈ 𝑌) ∧ 𝑏 ∈ 𝑌) ∧ 𝑐 = 〈𝑎, 𝑏〉) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
76 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) |
77 | 76 | eldifad 3871 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌)) |
78 | | elxp2 5467 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎 ∈ 𝑌 ∃𝑏 ∈ 𝑌 𝑐 = 〈𝑎, 𝑏〉) |
79 | 77, 78 | sylib 219 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎 ∈ 𝑌 ∃𝑏 ∈ 𝑌 𝑐 = 〈𝑎, 𝑏〉) |
80 | 75, 79 | r19.29vva 3297 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
81 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑧 = 〈𝑥, 𝑦〉) |
82 | 81 | fveq2d 6542 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) |
83 | | simp-4r 780 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐻‘𝑧) = 𝑐) |
84 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑥 ∈ 𝑋) |
85 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑦 ∈ 𝑋) |
86 | 52, 84, 85 | fvproj 30713 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐻‘〈𝑥, 𝑦〉) = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
87 | 82, 83, 86 | 3eqtr3d 2839 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑐 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
88 | | fof 6458 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
89 | 4, 88 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
90 | 89 | ad5antr 730 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐹:𝑋⟶𝑌) |
91 | 90, 84 | ffvelrnd 6717 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑥) ∈ 𝑌) |
92 | 90, 85 | ffvelrnd 6717 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑦) ∈ 𝑌) |
93 | | opelxp 5479 |
. . . . . . . . . . . . . 14
⊢
(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ (𝑌 × 𝑌) ↔ ((𝐹‘𝑥) ∈ 𝑌 ∧ (𝐹‘𝑦) ∈ 𝑌)) |
94 | 91, 92, 93 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ (𝑌 × 𝑌)) |
95 | | simp-5r 782 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) |
96 | 81, 95 | eqeltrrd 2884 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ )) |
97 | 50 | simprbi 497 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑥, 𝑦〉 ∈ ((𝑋 × 𝑋) ∖ ∼ ) → ¬
𝑥 ∼ 𝑦) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ¬ 𝑥 ∼ 𝑦) |
99 | 6 | ad5antr 730 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐹 Fn 𝑋) |
100 | 99, 84, 85, 44 | syl3anc 1364 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝑥 ∼ 𝑦 ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
101 | 100 | necon3bbid 3021 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (¬ 𝑥 ∼ 𝑦 ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
102 | 98, 101 | mpbid 233 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
103 | 94, 102, 39 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ ((𝑌 × 𝑌) ∖ I )) |
104 | 87, 103 | eqeltrd 2883 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) |
105 | | eldifi 4024 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ ) → 𝑧 ∈ (𝑋 × 𝑋)) |
106 | 105 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) → 𝑧 ∈ (𝑋 × 𝑋)) |
107 | | elxp2 5467 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑧 = 〈𝑥, 𝑦〉) |
108 | 106, 107 | sylib 219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) →
∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑧 = 〈𝑥, 𝑦〉) |
109 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑧 = 〈𝑥, 𝑦〉) |
110 | 104, 109 | r19.29vva 3297 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )) ∧ (𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) |
111 | 110 | r19.29an 3251 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) |
112 | 80, 111 | impbida 797 |
. . . . . . . 8
⊢ (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐)) |
113 | | opex 5248 |
. . . . . . . . . 10
⊢
〈(𝐹‘𝑥), (𝐹‘𝑦)〉 ∈ V |
114 | 52, 113 | fnmpoi 7624 |
. . . . . . . . 9
⊢ 𝐻 Fn (𝑋 × 𝑋) |
115 | | difss 4029 |
. . . . . . . . 9
⊢ ((𝑋 × 𝑋) ∖ ∼ ) ⊆ (𝑋 × 𝑋) |
116 | | fvelimab 6605 |
. . . . . . . . 9
⊢ ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ∼ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) ↔
∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐)) |
117 | 114, 115,
116 | mp2an 688 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) ↔
∃𝑧 ∈ ((𝑋 × 𝑋) ∖ ∼ )(𝐻‘𝑧) = 𝑐) |
118 | 112, 117 | syl6rbbr 291 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))) |
119 | 118 | eqrdv 2793 |
. . . . . 6
⊢ (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) = ((𝑌 × 𝑌) ∖ I )) |
120 | | ssv 3912 |
. . . . . . 7
⊢ 𝑌 ⊆ V |
121 | | xpss2 5463 |
. . . . . . 7
⊢ (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V)) |
122 | | difres 30040 |
. . . . . . 7
⊢ ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )) |
123 | 120, 121,
122 | mp2b 10 |
. . . . . 6
⊢ ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ) |
124 | 119, 123 | syl6eqr 2849 |
. . . . 5
⊢ (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌))) |
125 | 7 | toptopon 21209 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
126 | 3, 125 | sylib 219 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
127 | | qtoptopon 21996 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
128 | 126, 4, 127 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
129 | | qtophaus.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) |
130 | 129 | ralrimiva 3149 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) |
131 | | imaeq2 5802 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐹 “ 𝑥) = (𝐹 “ 𝑦)) |
132 | 131 | eleq1d 2867 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹 “ 𝑦) ∈ (𝐽 qTop 𝐹))) |
133 | 132 | cbvralv 3403 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐽 (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦 ∈ 𝐽 (𝐹 “ 𝑦) ∈ (𝐽 qTop 𝐹)) |
134 | 130, 133 | sylib 219 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ 𝐽 (𝐹 “ 𝑦) ∈ (𝐽 qTop 𝐹)) |
135 | 134 | r19.21bi 3175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝐹 “ 𝑦) ∈ (𝐽 qTop 𝐹)) |
136 | 7, 7 | txuni 21884 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = ∪ (𝐽 ×t 𝐽)) |
137 | 3, 3, 136 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 × 𝑋) = ∪ (𝐽 ×t 𝐽)) |
138 | 137 | difeq1d 4019 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 × 𝑋) ∖ ∼ ) = (∪ (𝐽
×t 𝐽)
∖ ∼ )) |
139 | | qtophaus.4 |
. . . . . . . 8
⊢ (𝜑 → ∼ ∈
(Clsd‘(𝐽
×t 𝐽))) |
140 | | txtop 21861 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top) |
141 | 3, 3, 140 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ×t 𝐽) ∈ Top) |
142 | | fcoinver 30047 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝑋 → (◡𝐹 ∘ 𝐹) Er 𝑋) |
143 | 6, 142 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) Er 𝑋) |
144 | | ereq1 8146 |
. . . . . . . . . . . . 13
⊢ ( ∼ =
(◡𝐹 ∘ 𝐹) → ( ∼ Er 𝑋 ↔ (◡𝐹 ∘ 𝐹) Er 𝑋)) |
145 | 43, 144 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( ∼ Er
𝑋 ↔ (◡𝐹 ∘ 𝐹) Er 𝑋) |
146 | 143, 145 | sylibr 235 |
. . . . . . . . . . 11
⊢ (𝜑 → ∼ Er 𝑋) |
147 | | erssxp 8162 |
. . . . . . . . . . 11
⊢ ( ∼ Er
𝑋 → ∼ ⊆ (𝑋 × 𝑋)) |
148 | 146, 147 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∼ ⊆ (𝑋 × 𝑋)) |
149 | 148, 137 | sseqtrd 3928 |
. . . . . . . . 9
⊢ (𝜑 → ∼ ⊆ ∪ (𝐽
×t 𝐽)) |
150 | | eqid 2795 |
. . . . . . . . . 10
⊢ ∪ (𝐽
×t 𝐽) =
∪ (𝐽 ×t 𝐽) |
151 | 150 | iscld2 21320 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐽) ∈ Top ∧ ∼
⊆ ∪ (𝐽 ×t 𝐽)) → ( ∼ ∈
(Clsd‘(𝐽
×t 𝐽))
↔ (∪ (𝐽 ×t 𝐽) ∖ ∼ ) ∈ (𝐽 ×t 𝐽))) |
152 | 141, 149,
151 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ∼ ∈
(Clsd‘(𝐽
×t 𝐽))
↔ (∪ (𝐽 ×t 𝐽) ∖ ∼ ) ∈ (𝐽 ×t 𝐽))) |
153 | 139, 152 | mpbid 233 |
. . . . . . 7
⊢ (𝜑 → (∪ (𝐽
×t 𝐽)
∖ ∼ ) ∈ (𝐽 ×t 𝐽)) |
154 | 138, 153 | eqeltrd 2883 |
. . . . . 6
⊢ (𝜑 → ((𝑋 × 𝑋) ∖ ∼ ) ∈ (𝐽 ×t 𝐽)) |
155 | 89, 89, 126, 126, 128, 128, 129, 135, 154, 52 | txomap 30715 |
. . . . 5
⊢ (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ ∼ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) |
156 | 124, 155 | eqeltrrd 2884 |
. . . 4
⊢ (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) |
157 | 23, 156 | eqeltrd 2883 |
. . 3
⊢ (𝜑 → (∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹)) ∖ ( I ↾ ∪ (𝐽
qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) |
158 | | eqid 2795 |
. . . . 5
⊢ ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹)) = ∪ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) |
159 | 158 | iscld2 21320 |
. . . 4
⊢ ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ ∪ (𝐽
qTop 𝐹)) ⊆ ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹))) → (( I ↾ ∪ (𝐽
qTop 𝐹)) ∈
(Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ (∪
((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ ∪ (𝐽
qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))) |
160 | 159 | biimpar 478 |
. . 3
⊢
(((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ ∪ (𝐽
qTop 𝐹)) ⊆ ∪ ((𝐽
qTop 𝐹) ×t
(𝐽 qTop 𝐹))) ∧ (∪
((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ ∪ (𝐽
qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ ∪ (𝐽
qTop 𝐹)) ∈
(Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))) |
161 | 11, 16, 157, 160 | syl21anc 834 |
. 2
⊢ (𝜑 → ( I ↾ ∪ (𝐽
qTop 𝐹)) ∈
(Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))) |
162 | 13 | hausdiag 21937 |
. 2
⊢ ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ ∪ (𝐽
qTop 𝐹)) ∈
(Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))) |
163 | 9, 161, 162 | sylanbrc 583 |
1
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) |