Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtophaus Structured version   Visualization version   GIF version

Theorem qtophaus 33833
Description: If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
Hypotheses
Ref Expression
qtophaus.x 𝑋 = 𝐽
qtophaus.e = (𝐹𝐹)
qtophaus.h 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
qtophaus.1 (𝜑𝐽 ∈ Haus)
qtophaus.2 (𝜑𝐹:𝑋onto𝑌)
qtophaus.3 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
qtophaus.4 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
Assertion
Ref Expression
qtophaus (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem qtophaus
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtophaus.1 . . . 4 (𝜑𝐽 ∈ Haus)
2 haustop 23225 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtophaus.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6777 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtophaus.x . . . 4 𝑋 = 𝐽
87qtoptop 23594 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 584 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 txtop 23463 . . . 4 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
119, 9, 10syl2anc 584 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
12 idssxp 6023 . . . 4 ( I ↾ (𝐽 qTop 𝐹)) ⊆ ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹))
13 eqid 2730 . . . . . 6 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
1413, 13txuni 23486 . . . . 5 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159, 9, 14syl2anc 584 . . . 4 (𝜑 → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
1612, 15sseqtrid 3992 . . 3 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
177qtopuni 23596 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
183, 4, 17syl2anc 584 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1918sqxpeqd 5673 . . . . . 6 (𝜑 → (𝑌 × 𝑌) = ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)))
2019, 15eqtr2d 2766 . . . . 5 (𝜑 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = (𝑌 × 𝑌))
2118eqcomd 2736 . . . . . 6 (𝜑 (𝐽 qTop 𝐹) = 𝑌)
2221reseq2d 5953 . . . . 5 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) = ( I ↾ 𝑌))
2320, 22difeq12d 4093 . . . 4 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
24 qtophaus.h . . . . . . . . . 10 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
25 opex 5427 . . . . . . . . . 10 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
2624, 25fnmpoi 8052 . . . . . . . . 9 𝐻 Fn (𝑋 × 𝑋)
27 difss 4102 . . . . . . . . 9 ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)
28 fvelimab 6936 . . . . . . . . 9 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
2926, 27, 28mp2an 692 . . . . . . . 8 (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
30 simp-4r 783 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥𝑋)
31 simplr 768 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑦𝑋)
32 opelxpi 5678 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3330, 31, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
34 df-br 5111 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × 𝑋)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3533, 34sylibr 234 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦)
36 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) = 𝑎)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑦) = 𝑏)
3836, 37opeq12d 4848 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨𝑎, 𝑏⟩)
39 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 = ⟨𝑎, 𝑏⟩)
40 simp-8r 791 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
4139, 40eqeltrrd 2830 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑎, 𝑏⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
4238, 41eqeltrd 2829 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
43 relxp 5659 . . . . . . . . . . . . . . . . . 18 Rel (𝑌 × 𝑌)
44 opeldifid 32535 . . . . . . . . . . . . . . . . . 18 (Rel (𝑌 × 𝑌) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦))))
4543, 44ax-mp 5 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4642, 45sylib 218 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4746simprd 495 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) ≠ (𝐹𝑦))
486ad8antr 740 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝐹 Fn 𝑋)
49 qtophaus.e . . . . . . . . . . . . . . . . . 18 = (𝐹𝐹)
5049fcoinvbr 32541 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5148, 30, 31, 50syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5251necon3bbid 2963 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
5347, 52mpbird 257 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ¬ 𝑥 𝑦)
54 df-br 5111 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
55 brdif 5163 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5654, 55bitr3i 277 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5735, 53, 56sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
5824, 30, 31fvproj 8116 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5938, 58, 393eqtr4d 2775 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐)
60 fveqeq2 6870 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) = 𝑐 ↔ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐))
6160rspcev 3591 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ∧ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
6257, 59, 61syl2anc 584 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
63 fofun 6776 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌 → Fun 𝐹)
644, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐹)
6564ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → Fun 𝐹)
6665ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → Fun 𝐹)
67 simp-4r 783 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏𝑌)
68 foima 6780 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
694, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑋) = 𝑌)
7069ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → (𝐹𝑋) = 𝑌)
7170ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → (𝐹𝑋) = 𝑌)
7267, 71eleqtrrd 2832 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏 ∈ (𝐹𝑋))
73 fvelima 6929 . . . . . . . . . . . . 13 ((Fun 𝐹𝑏 ∈ (𝐹𝑋)) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7466, 72, 73syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7562, 74r19.29a 3142 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
76 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎𝑌)
7776, 70eleqtrrd 2832 . . . . . . . . . . . 12 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎 ∈ (𝐹𝑋))
78 fvelima 6929 . . . . . . . . . . . 12 ((Fun 𝐹𝑎 ∈ (𝐹𝑋)) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7965, 77, 78syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
8075, 79r19.29a 3142 . . . . . . . . . 10 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
81 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
8281eldifad 3929 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌))
83 elxp2 5665 . . . . . . . . . . 11 (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8482, 83sylib 218 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8580, 84r19.29vva 3198 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
86 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 = ⟨𝑥, 𝑦⟩)
8786fveq2d 6865 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
88 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = 𝑐)
89 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑥𝑋)
90 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑦𝑋)
9124, 89, 90fvproj 8116 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
9287, 88, 913eqtr3d 2773 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
93 fof 6775 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
944, 93syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋𝑌)
9594ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹:𝑋𝑌)
9695, 89ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ∈ 𝑌)
9795, 90ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) ∈ 𝑌)
98 opelxp 5677 . . . . . . . . . . . . . 14 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ↔ ((𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌))
9996, 97, 98sylanbrc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌))
100 simp-5r 785 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ))
10186, 100eqeltrrd 2830 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
10256simprbi 496 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) → ¬ 𝑥 𝑦)
103101, 102syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ¬ 𝑥 𝑦)
1046ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹 Fn 𝑋)
105104, 89, 90, 50syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
106105necon3bbid 2963 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
107103, 106mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ≠ (𝐹𝑦))
10899, 107, 45sylanbrc 583 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
10992, 108eqeltrd 2829 . . . . . . . . . . 11 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
110 eldifi 4097 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋 × 𝑋) ∖ ) → 𝑧 ∈ (𝑋 × 𝑋))
111110adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → 𝑧 ∈ (𝑋 × 𝑋))
112 elxp2 5665 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
113111, 112sylib 218 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
114113adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
115109, 114r19.29vva 3198 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
116115r19.29an 3138 . . . . . . . . 9 ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
11785, 116impbida 800 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
11829, 117bitr4id 290 . . . . . . 7 (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )))
119118eqrdv 2728 . . . . . 6 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ I ))
120 ssv 3974 . . . . . . 7 𝑌 ⊆ V
121 xpss2 5661 . . . . . . 7 (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V))
122 difres 32536 . . . . . . 7 ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ))
123120, 121, 122mp2b 10 . . . . . 6 ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )
124119, 123eqtr4di 2783 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
1257toptopon 22811 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1263, 125sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
127 qtoptopon 23598 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
128126, 4, 127syl2anc 584 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
129 qtophaus.3 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
130129ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
131 imaeq2 6030 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
132131eleq1d 2814 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝑦) ∈ (𝐽 qTop 𝐹)))
133132cbvralvw 3216 . . . . . . . 8 (∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
134130, 133sylib 218 . . . . . . 7 (𝜑 → ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
135134r19.21bi 3230 . . . . . 6 ((𝜑𝑦𝐽) → (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
1367, 7txuni 23486 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1373, 3, 136syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
138137difeq1d 4091 . . . . . . 7 (𝜑 → ((𝑋 × 𝑋) ∖ ) = ( (𝐽 ×t 𝐽) ∖ ))
139 qtophaus.4 . . . . . . . 8 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
140 txtop 23463 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
1413, 3, 140syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐽) ∈ Top)
142 fcoinver 32540 . . . . . . . . . . . . 13 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
1436, 142syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐹) Er 𝑋)
144 ereq1 8681 . . . . . . . . . . . . 13 ( = (𝐹𝐹) → ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋))
14549, 144ax-mp 5 . . . . . . . . . . . 12 ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋)
146143, 145sylibr 234 . . . . . . . . . . 11 (𝜑 Er 𝑋)
147 erssxp 8697 . . . . . . . . . . 11 ( Er 𝑋 ⊆ (𝑋 × 𝑋))
148146, 147syl 17 . . . . . . . . . 10 (𝜑 ⊆ (𝑋 × 𝑋))
149148, 137sseqtrd 3986 . . . . . . . . 9 (𝜑 (𝐽 ×t 𝐽))
150 eqid 2730 . . . . . . . . . 10 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
151150iscld2 22922 . . . . . . . . 9 (((𝐽 ×t 𝐽) ∈ Top ∧ (𝐽 ×t 𝐽)) → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
152141, 149, 151syl2anc 584 . . . . . . . 8 (𝜑 → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
153139, 152mpbid 232 . . . . . . 7 (𝜑 → ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽))
154138, 153eqeltrd 2829 . . . . . 6 (𝜑 → ((𝑋 × 𝑋) ∖ ) ∈ (𝐽 ×t 𝐽))
15594, 94, 126, 126, 128, 128, 129, 135, 154, 24txomap 33831 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
156124, 155eqeltrrd 2830 . . . 4 (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
15723, 156eqeltrd 2829 . . 3 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
158 eqid 2730 . . . . 5 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))
159158iscld2 22922 . . . 4 ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → (( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
160159biimpar 477 . . 3 (((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ∧ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16111, 16, 157, 160syl21anc 837 . 2 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16213hausdiag 23539 . 2 ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))))
1639, 161, 162sylanbrc 583 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  wss 3917  cop 4598   cuni 4874   class class class wbr 5110   I cid 5535   × cxp 5639  ccnv 5640  cres 5643  cima 5644  ccom 5645  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392   Er wer 8671   qTop cqtop 17473  Topctop 22787  TopOnctopon 22804  Clsdccld 22910  Hauscha 23202   ×t ctx 23454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-topgen 17413  df-qtop 17477  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-haus 23209  df-tx 23456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator