Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtophaus Structured version   Visualization version   GIF version

Theorem qtophaus 30285
Description: If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
Hypotheses
Ref Expression
qtophaus.x 𝑋 = 𝐽
qtophaus.e = (𝐹𝐹)
qtophaus.h 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
qtophaus.1 (𝜑𝐽 ∈ Haus)
qtophaus.2 (𝜑𝐹:𝑋onto𝑌)
qtophaus.3 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
qtophaus.4 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
Assertion
Ref Expression
qtophaus (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem qtophaus
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtophaus.1 . . . 4 (𝜑𝐽 ∈ Haus)
2 haustop 21415 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtophaus.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6300 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtophaus.x . . . 4 𝑋 = 𝐽
87qtoptop 21783 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 579 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 txtop 21652 . . . 4 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
119, 9, 10syl2anc 579 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
12 idssxp 5638 . . . 4 ( I ↾ (𝐽 qTop 𝐹)) ⊆ ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹))
13 eqid 2765 . . . . . 6 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
1413, 13txuni 21675 . . . . 5 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159, 9, 14syl2anc 579 . . . 4 (𝜑 → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
1612, 15syl5sseq 3813 . . 3 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
177qtopuni 21785 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
183, 4, 17syl2anc 579 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1918sqxpeqd 5309 . . . . . 6 (𝜑 → (𝑌 × 𝑌) = ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)))
2019, 15eqtr2d 2800 . . . . 5 (𝜑 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = (𝑌 × 𝑌))
2118eqcomd 2771 . . . . . 6 (𝜑 (𝐽 qTop 𝐹) = 𝑌)
2221reseq2d 5565 . . . . 5 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) = ( I ↾ 𝑌))
2320, 22difeq12d 3891 . . . 4 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
24 simp-4r 803 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥𝑋)
25 simplr 785 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑦𝑋)
26 opelxpi 5314 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
2724, 25, 26syl2anc 579 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
28 df-br 4810 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × 𝑋)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
2927, 28sylibr 225 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦)
30 simpllr 793 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) = 𝑎)
31 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑦) = 𝑏)
3230, 31opeq12d 4567 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨𝑎, 𝑏⟩)
33 simp-5r 807 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 = ⟨𝑎, 𝑏⟩)
34 simp-8r 819 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
3533, 34eqeltrrd 2845 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑎, 𝑏⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
3632, 35eqeltrd 2844 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
37 relxp 5295 . . . . . . . . . . . . . . . . . 18 Rel (𝑌 × 𝑌)
38 opeldifid 29795 . . . . . . . . . . . . . . . . . 18 (Rel (𝑌 × 𝑌) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦))))
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4036, 39sylib 209 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4140simprd 489 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) ≠ (𝐹𝑦))
426ad8antr 740 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝐹 Fn 𝑋)
43 qtophaus.e . . . . . . . . . . . . . . . . . 18 = (𝐹𝐹)
4443fcoinvbr 29802 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
4542, 24, 25, 44syl3anc 1490 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
4645necon3bbid 2974 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
4741, 46mpbird 248 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ¬ 𝑥 𝑦)
48 df-br 4810 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
49 brdif 4862 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5048, 49bitr3i 268 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5129, 47, 50sylanbrc 578 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
52 qtophaus.h . . . . . . . . . . . . . . 15 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5352, 24, 25fvproj 30281 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5432, 53, 333eqtr4d 2809 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐)
55 fveqeq2 6384 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) = 𝑐 ↔ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐))
5655rspcev 3461 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ∧ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
5751, 54, 56syl2anc 579 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
58 fofun 6299 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌 → Fun 𝐹)
594, 58syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐹)
6059ad4antr 724 . . . . . . . . . . . . . 14 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → Fun 𝐹)
6160ad2antrr 717 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → Fun 𝐹)
62 simp-4r 803 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏𝑌)
63 foima 6303 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
644, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑋) = 𝑌)
6564ad4antr 724 . . . . . . . . . . . . . . 15 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → (𝐹𝑋) = 𝑌)
6665ad2antrr 717 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → (𝐹𝑋) = 𝑌)
6762, 66eleqtrrd 2847 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏 ∈ (𝐹𝑋))
68 fvelima 6437 . . . . . . . . . . . . 13 ((Fun 𝐹𝑏 ∈ (𝐹𝑋)) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
6961, 67, 68syl2anc 579 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7057, 69r19.29a 3225 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
71 simpllr 793 . . . . . . . . . . . . 13 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎𝑌)
7271, 65eleqtrrd 2847 . . . . . . . . . . . 12 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎 ∈ (𝐹𝑋))
73 fvelima 6437 . . . . . . . . . . . 12 ((Fun 𝐹𝑎 ∈ (𝐹𝑋)) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7460, 72, 73syl2anc 579 . . . . . . . . . . 11 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7570, 74r19.29a 3225 . . . . . . . . . 10 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
76 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
7776eldifad 3744 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌))
78 elxp2 5301 . . . . . . . . . . 11 (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
7977, 78sylib 209 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8075, 79r19.29vva 3228 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
81 simpr 477 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 = ⟨𝑥, 𝑦⟩)
8281fveq2d 6379 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
83 simp-4r 803 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = 𝑐)
84 simpllr 793 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑥𝑋)
85 simplr 785 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑦𝑋)
8652, 84, 85fvproj 30281 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
8782, 83, 863eqtr3d 2807 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
88 fof 6298 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
894, 88syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋𝑌)
9089ad5antr 728 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹:𝑋𝑌)
9190, 84ffvelrnd 6550 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ∈ 𝑌)
9290, 85ffvelrnd 6550 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) ∈ 𝑌)
93 opelxp 5313 . . . . . . . . . . . . . 14 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ↔ ((𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌))
9491, 92, 93sylanbrc 578 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌))
95 simp-5r 807 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ))
9681, 95eqeltrrd 2845 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
9750simprbi 490 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) → ¬ 𝑥 𝑦)
9896, 97syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ¬ 𝑥 𝑦)
996ad5antr 728 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹 Fn 𝑋)
10099, 84, 85, 44syl3anc 1490 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
101100necon3bbid 2974 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
10298, 101mpbid 223 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ≠ (𝐹𝑦))
10394, 102, 39sylanbrc 578 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
10487, 103eqeltrd 2844 . . . . . . . . . . 11 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
105 eldifi 3894 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋 × 𝑋) ∖ ) → 𝑧 ∈ (𝑋 × 𝑋))
106105adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → 𝑧 ∈ (𝑋 × 𝑋))
107 elxp2 5301 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
108106, 107sylib 209 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
109108adantr 472 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
110104, 109r19.29vva 3228 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
111110r19.29an 3224 . . . . . . . . 9 ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
11280, 111impbida 835 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
113 opex 5088 . . . . . . . . . 10 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
11452, 113fnmpt2i 7440 . . . . . . . . 9 𝐻 Fn (𝑋 × 𝑋)
115 difss 3899 . . . . . . . . 9 ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)
116 fvelimab 6442 . . . . . . . . 9 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
117114, 115, 116mp2an 683 . . . . . . . 8 (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
118112, 117syl6rbbr 281 . . . . . . 7 (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )))
119118eqrdv 2763 . . . . . 6 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ I ))
120 ssv 3785 . . . . . . 7 𝑌 ⊆ V
121 xpss2 5297 . . . . . . 7 (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V))
122 difres 29796 . . . . . . 7 ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ))
123120, 121, 122mp2b 10 . . . . . 6 ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )
124119, 123syl6eqr 2817 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
1257toptopon 21001 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1263, 125sylib 209 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
127 qtoptopon 21787 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
128126, 4, 127syl2anc 579 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
129 qtophaus.3 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
130129ralrimiva 3113 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
131 imaeq2 5644 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
132131eleq1d 2829 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝑦) ∈ (𝐽 qTop 𝐹)))
133132cbvralv 3319 . . . . . . . 8 (∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
134130, 133sylib 209 . . . . . . 7 (𝜑 → ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
135134r19.21bi 3079 . . . . . 6 ((𝜑𝑦𝐽) → (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
1367, 7txuni 21675 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1373, 3, 136syl2anc 579 . . . . . . . 8 (𝜑 → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
138137difeq1d 3889 . . . . . . 7 (𝜑 → ((𝑋 × 𝑋) ∖ ) = ( (𝐽 ×t 𝐽) ∖ ))
139 qtophaus.4 . . . . . . . 8 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
140 txtop 21652 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
1413, 3, 140syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐽) ∈ Top)
142 fcoinver 29801 . . . . . . . . . . . . 13 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
1436, 142syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐹) Er 𝑋)
144 ereq1 7954 . . . . . . . . . . . . 13 ( = (𝐹𝐹) → ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋))
14543, 144ax-mp 5 . . . . . . . . . . . 12 ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋)
146143, 145sylibr 225 . . . . . . . . . . 11 (𝜑 Er 𝑋)
147 erssxp 7970 . . . . . . . . . . 11 ( Er 𝑋 ⊆ (𝑋 × 𝑋))
148146, 147syl 17 . . . . . . . . . 10 (𝜑 ⊆ (𝑋 × 𝑋))
149148, 137sseqtrd 3801 . . . . . . . . 9 (𝜑 (𝐽 ×t 𝐽))
150 eqid 2765 . . . . . . . . . 10 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
151150iscld2 21112 . . . . . . . . 9 (((𝐽 ×t 𝐽) ∈ Top ∧ (𝐽 ×t 𝐽)) → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
152141, 149, 151syl2anc 579 . . . . . . . 8 (𝜑 → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
153139, 152mpbid 223 . . . . . . 7 (𝜑 → ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽))
154138, 153eqeltrd 2844 . . . . . 6 (𝜑 → ((𝑋 × 𝑋) ∖ ) ∈ (𝐽 ×t 𝐽))
15589, 89, 126, 126, 128, 128, 129, 135, 154, 52txomap 30283 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
156124, 155eqeltrrd 2845 . . . 4 (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
15723, 156eqeltrd 2844 . . 3 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
158 eqid 2765 . . . . 5 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))
159158iscld2 21112 . . . 4 ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → (( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
160159biimpar 469 . . 3 (((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ∧ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16111, 16, 157, 160syl21anc 866 . 2 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16213hausdiag 21728 . 2 ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))))
1639, 161, 162sylanbrc 578 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cdif 3729  wss 3732  cop 4340   cuni 4594   class class class wbr 4809   I cid 5184   × cxp 5275  ccnv 5276  cres 5279  cima 5280  ccom 5281  Rel wrel 5282  Fun wfun 6062   Fn wfn 6063  wf 6064  ontowfo 6066  cfv 6068  (class class class)co 6842  cmpt2 6844   Er wer 7944   qTop cqtop 16431  Topctop 20977  TopOnctopon 20994  Clsdccld 21100  Hauscha 21392   ×t ctx 21643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-topgen 16372  df-qtop 16435  df-top 20978  df-topon 20995  df-bases 21030  df-cld 21103  df-haus 21399  df-tx 21645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator