Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtophaus Structured version   Visualization version   GIF version

Theorem qtophaus 33796
Description: If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
Hypotheses
Ref Expression
qtophaus.x 𝑋 = 𝐽
qtophaus.e = (𝐹𝐹)
qtophaus.h 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
qtophaus.1 (𝜑𝐽 ∈ Haus)
qtophaus.2 (𝜑𝐹:𝑋onto𝑌)
qtophaus.3 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
qtophaus.4 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
Assertion
Ref Expression
qtophaus (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem qtophaus
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtophaus.1 . . . 4 (𝜑𝐽 ∈ Haus)
2 haustop 23354 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtophaus.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6822 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtophaus.x . . . 4 𝑋 = 𝐽
87qtoptop 23723 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 584 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 txtop 23592 . . . 4 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
119, 9, 10syl2anc 584 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
12 idssxp 6068 . . . 4 ( I ↾ (𝐽 qTop 𝐹)) ⊆ ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹))
13 eqid 2734 . . . . . 6 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
1413, 13txuni 23615 . . . . 5 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159, 9, 14syl2anc 584 . . . 4 (𝜑 → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
1612, 15sseqtrid 4047 . . 3 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
177qtopuni 23725 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
183, 4, 17syl2anc 584 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1918sqxpeqd 5720 . . . . . 6 (𝜑 → (𝑌 × 𝑌) = ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)))
2019, 15eqtr2d 2775 . . . . 5 (𝜑 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = (𝑌 × 𝑌))
2118eqcomd 2740 . . . . . 6 (𝜑 (𝐽 qTop 𝐹) = 𝑌)
2221reseq2d 5999 . . . . 5 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) = ( I ↾ 𝑌))
2320, 22difeq12d 4136 . . . 4 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
24 qtophaus.h . . . . . . . . . 10 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
25 opex 5474 . . . . . . . . . 10 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
2624, 25fnmpoi 8093 . . . . . . . . 9 𝐻 Fn (𝑋 × 𝑋)
27 difss 4145 . . . . . . . . 9 ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)
28 fvelimab 6980 . . . . . . . . 9 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
2926, 27, 28mp2an 692 . . . . . . . 8 (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
30 simp-4r 784 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥𝑋)
31 simplr 769 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑦𝑋)
32 opelxpi 5725 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3330, 31, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
34 df-br 5148 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × 𝑋)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3533, 34sylibr 234 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦)
36 simpllr 776 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) = 𝑎)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑦) = 𝑏)
3836, 37opeq12d 4885 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨𝑎, 𝑏⟩)
39 simp-5r 786 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 = ⟨𝑎, 𝑏⟩)
40 simp-8r 792 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
4139, 40eqeltrrd 2839 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑎, 𝑏⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
4238, 41eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
43 relxp 5706 . . . . . . . . . . . . . . . . . 18 Rel (𝑌 × 𝑌)
44 opeldifid 32618 . . . . . . . . . . . . . . . . . 18 (Rel (𝑌 × 𝑌) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦))))
4543, 44ax-mp 5 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4642, 45sylib 218 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4746simprd 495 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) ≠ (𝐹𝑦))
486ad8antr 740 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝐹 Fn 𝑋)
49 qtophaus.e . . . . . . . . . . . . . . . . . 18 = (𝐹𝐹)
5049fcoinvbr 32624 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5148, 30, 31, 50syl3anc 1370 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
5251necon3bbid 2975 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
5347, 52mpbird 257 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ¬ 𝑥 𝑦)
54 df-br 5148 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
55 brdif 5200 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5654, 55bitr3i 277 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5735, 53, 56sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
5824, 30, 31fvproj 8157 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5938, 58, 393eqtr4d 2784 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐)
60 fveqeq2 6915 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) = 𝑐 ↔ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐))
6160rspcev 3621 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ∧ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
6257, 59, 61syl2anc 584 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
63 fofun 6821 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌 → Fun 𝐹)
644, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐹)
6564ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → Fun 𝐹)
6665ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → Fun 𝐹)
67 simp-4r 784 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏𝑌)
68 foima 6825 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
694, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑋) = 𝑌)
7069ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → (𝐹𝑋) = 𝑌)
7170ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → (𝐹𝑋) = 𝑌)
7267, 71eleqtrrd 2841 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏 ∈ (𝐹𝑋))
73 fvelima 6973 . . . . . . . . . . . . 13 ((Fun 𝐹𝑏 ∈ (𝐹𝑋)) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7466, 72, 73syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7562, 74r19.29a 3159 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
76 simpllr 776 . . . . . . . . . . . . 13 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎𝑌)
7776, 70eleqtrrd 2841 . . . . . . . . . . . 12 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎 ∈ (𝐹𝑋))
78 fvelima 6973 . . . . . . . . . . . 12 ((Fun 𝐹𝑎 ∈ (𝐹𝑋)) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7965, 77, 78syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
8075, 79r19.29a 3159 . . . . . . . . . 10 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
81 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
8281eldifad 3974 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌))
83 elxp2 5712 . . . . . . . . . . 11 (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8482, 83sylib 218 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8580, 84r19.29vva 3213 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
86 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 = ⟨𝑥, 𝑦⟩)
8786fveq2d 6910 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
88 simp-4r 784 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = 𝑐)
89 simpllr 776 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑥𝑋)
90 simplr 769 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑦𝑋)
9124, 89, 90fvproj 8157 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
9287, 88, 913eqtr3d 2782 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
93 fof 6820 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
944, 93syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋𝑌)
9594ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹:𝑋𝑌)
9695, 89ffvelcdmd 7104 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ∈ 𝑌)
9795, 90ffvelcdmd 7104 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) ∈ 𝑌)
98 opelxp 5724 . . . . . . . . . . . . . 14 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ↔ ((𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌))
9996, 97, 98sylanbrc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌))
100 simp-5r 786 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ))
10186, 100eqeltrrd 2839 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
10256simprbi 496 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) → ¬ 𝑥 𝑦)
103101, 102syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ¬ 𝑥 𝑦)
1046ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹 Fn 𝑋)
105104, 89, 90, 50syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
106105necon3bbid 2975 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
107103, 106mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ≠ (𝐹𝑦))
10899, 107, 45sylanbrc 583 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
10992, 108eqeltrd 2838 . . . . . . . . . . 11 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
110 eldifi 4140 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋 × 𝑋) ∖ ) → 𝑧 ∈ (𝑋 × 𝑋))
111110adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → 𝑧 ∈ (𝑋 × 𝑋))
112 elxp2 5712 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
113111, 112sylib 218 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
114113adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
115109, 114r19.29vva 3213 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
116115r19.29an 3155 . . . . . . . . 9 ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
11785, 116impbida 801 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
11829, 117bitr4id 290 . . . . . . 7 (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )))
119118eqrdv 2732 . . . . . 6 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ I ))
120 ssv 4019 . . . . . . 7 𝑌 ⊆ V
121 xpss2 5708 . . . . . . 7 (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V))
122 difres 32619 . . . . . . 7 ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ))
123120, 121, 122mp2b 10 . . . . . 6 ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )
124119, 123eqtr4di 2792 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
1257toptopon 22938 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1263, 125sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
127 qtoptopon 23727 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
128126, 4, 127syl2anc 584 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
129 qtophaus.3 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
130129ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
131 imaeq2 6075 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
132131eleq1d 2823 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝑦) ∈ (𝐽 qTop 𝐹)))
133132cbvralvw 3234 . . . . . . . 8 (∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
134130, 133sylib 218 . . . . . . 7 (𝜑 → ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
135134r19.21bi 3248 . . . . . 6 ((𝜑𝑦𝐽) → (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
1367, 7txuni 23615 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1373, 3, 136syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
138137difeq1d 4134 . . . . . . 7 (𝜑 → ((𝑋 × 𝑋) ∖ ) = ( (𝐽 ×t 𝐽) ∖ ))
139 qtophaus.4 . . . . . . . 8 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
140 txtop 23592 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
1413, 3, 140syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐽) ∈ Top)
142 fcoinver 32623 . . . . . . . . . . . . 13 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
1436, 142syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐹) Er 𝑋)
144 ereq1 8750 . . . . . . . . . . . . 13 ( = (𝐹𝐹) → ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋))
14549, 144ax-mp 5 . . . . . . . . . . . 12 ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋)
146143, 145sylibr 234 . . . . . . . . . . 11 (𝜑 Er 𝑋)
147 erssxp 8766 . . . . . . . . . . 11 ( Er 𝑋 ⊆ (𝑋 × 𝑋))
148146, 147syl 17 . . . . . . . . . 10 (𝜑 ⊆ (𝑋 × 𝑋))
149148, 137sseqtrd 4035 . . . . . . . . 9 (𝜑 (𝐽 ×t 𝐽))
150 eqid 2734 . . . . . . . . . 10 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
151150iscld2 23051 . . . . . . . . 9 (((𝐽 ×t 𝐽) ∈ Top ∧ (𝐽 ×t 𝐽)) → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
152141, 149, 151syl2anc 584 . . . . . . . 8 (𝜑 → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
153139, 152mpbid 232 . . . . . . 7 (𝜑 → ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽))
154138, 153eqeltrd 2838 . . . . . 6 (𝜑 → ((𝑋 × 𝑋) ∖ ) ∈ (𝐽 ×t 𝐽))
15594, 94, 126, 126, 128, 128, 129, 135, 154, 24txomap 33794 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
156124, 155eqeltrrd 2839 . . . 4 (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
15723, 156eqeltrd 2838 . . 3 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
158 eqid 2734 . . . . 5 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))
159158iscld2 23051 . . . 4 ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → (( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
160159biimpar 477 . . 3 (((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ∧ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16111, 16, 157, 160syl21anc 838 . 2 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16213hausdiag 23668 . 2 ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))))
1639, 161, 162sylanbrc 583 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  wss 3962  cop 4636   cuni 4911   class class class wbr 5147   I cid 5581   × cxp 5686  ccnv 5687  cres 5690  cima 5691  ccom 5692  Rel wrel 5693  Fun wfun 6556   Fn wfn 6557  wf 6558  ontowfo 6560  cfv 6562  (class class class)co 7430  cmpo 7432   Er wer 8740   qTop cqtop 17549  Topctop 22914  TopOnctopon 22931  Clsdccld 23039  Hauscha 23331   ×t ctx 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-topgen 17489  df-qtop 17553  df-top 22915  df-topon 22932  df-bases 22968  df-cld 23042  df-haus 23338  df-tx 23585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator