Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐴) |
2 | | simpr 485 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) → 𝑝 = 𝑔) |
3 | 2 | oveq1d 7290 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) → (𝑝 + 𝑇) = (𝑔 + 𝑇)) |
4 | 3, 2 | oveq12d 7293 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) → ((𝑝 + 𝑇) − 𝑝) = ((𝑔 + 𝑇) − 𝑔)) |
5 | 4 | eqeq2d 2749 |
. . . 4
⊢
(((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) → (𝑄 = ((𝑝 + 𝑇) − 𝑝) ↔ 𝑄 = ((𝑔 + 𝑇) − 𝑔))) |
6 | | simplr 766 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) → 𝑄 = ((𝑔 + 𝑇) − 𝑔)) |
7 | 1, 5, 6 | rspcedvd 3563 |
. . 3
⊢ ((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ 𝑔 ∈ 𝐴) → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
8 | | cyc3conja.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ Fin) |
9 | 8 | ad5antr 731 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝐷 ∈ Fin) |
10 | 9 | ad3antrrr 727 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝐷 ∈ Fin) |
11 | | simp-8r 789 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑔 ∈ (Base‘𝑆)) |
12 | | simp-6r 785 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ¬ 𝑔 ∈ 𝐴) |
13 | 11, 12 | eldifd 3898 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑔 ∈ ((Base‘𝑆) ∖ 𝐴)) |
14 | | simpllr 773 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (𝐷 ∖ ran 𝑢)) |
15 | 14 | eldifad 3899 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ 𝐷) |
16 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ (𝐷 ∖ ran 𝑢)) |
17 | 16 | eldifad 3899 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ 𝐷) |
18 | 15, 17 | prssd 4755 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → {𝑥, 𝑦} ⊆ 𝐷) |
19 | | simpr 485 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ≠ 𝑦) |
20 | | pr2nelem 9760 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝐷 ∖ ran 𝑢) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢) ∧ 𝑥 ≠ 𝑦) → {𝑥, 𝑦} ≈ 2o) |
21 | 14, 16, 19, 20 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → {𝑥, 𝑦} ≈ 2o) |
22 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
23 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
24 | 22, 23 | pmtrrn 19065 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷)) |
25 | 10, 18, 21, 24 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷)) |
26 | | cyc3conja.s |
. . . . . . . . . 10
⊢ 𝑆 = (SymGrp‘𝐷) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
28 | 26, 27, 23 | pmtrodpm 20802 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧
((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷)) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ (pmEven‘𝐷))) |
29 | 10, 25, 28 | syl2anc 584 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ (pmEven‘𝐷))) |
30 | | cyc3conja.a |
. . . . . . . . 9
⊢ 𝐴 = (pmEven‘𝐷) |
31 | 30 | difeq2i 4054 |
. . . . . . . 8
⊢
((Base‘𝑆)
∖ 𝐴) =
((Base‘𝑆) ∖
(pmEven‘𝐷)) |
32 | 29, 31 | eleqtrrdi 2850 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ 𝐴)) |
33 | 26, 27, 30 | odpmco 31355 |
. . . . . . 7
⊢ ((𝐷 ∈ Fin ∧ 𝑔 ∈ ((Base‘𝑆) ∖ 𝐴) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ 𝐴)) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ 𝐴) |
34 | 10, 13, 32, 33 | syl3anc 1370 |
. . . . . 6
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ 𝐴) |
35 | | simpr 485 |
. . . . . . . . 9
⊢
((((((((((𝜑 ∧
𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
36 | 35 | oveq1d 7290 |
. . . . . . . 8
⊢
((((((((((𝜑 ∧
𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → (𝑝 + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇)) |
37 | 36, 35 | oveq12d 7293 |
. . . . . . 7
⊢
((((((((((𝜑 ∧
𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → ((𝑝 + 𝑇) − 𝑝) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) − (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
38 | 37 | eqeq2d 2749 |
. . . . . 6
⊢
((((((((((𝜑 ∧
𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → (𝑄 = ((𝑝 + 𝑇) − 𝑝) ↔ 𝑄 = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) − (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))) |
39 | 29 | eldifad 3899 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) |
40 | | 0zd 12331 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℤ) |
41 | | cyc3conja.n |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = (♯‘𝐷) |
42 | | hashcl 14071 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ Fin →
(♯‘𝐷) ∈
ℕ0) |
43 | 8, 42 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐷) ∈
ℕ0) |
44 | 41, 43 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
45 | 44 | nn0zd 12424 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
46 | | 3z 12353 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℤ |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 3 ∈
ℤ) |
48 | | 0red 10978 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈
ℝ) |
49 | 47 | zred 12426 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 3 ∈
ℝ) |
50 | | 3pos 12078 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
3 |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 3) |
52 | 48, 49, 51 | ltled 11123 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 3) |
53 | | 5re 12060 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℝ |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 5 ∈
ℝ) |
55 | 44 | nn0red 12294 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℝ) |
56 | | 3lt5 12151 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
5 |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 3 < 5) |
58 | 49, 54, 57 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 3 ≤ 5) |
59 | | cyc3conja.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 5 ≤ 𝑁) |
60 | 49, 54, 55, 58, 59 | letrd 11132 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 3 ≤ 𝑁) |
61 | 40, 45, 47, 52, 60 | elfzd 13247 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 3 ∈ (0...𝑁)) |
62 | | cyc3conja.c |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) |
63 | | cyc3conja.m |
. . . . . . . . . . . . . . . 16
⊢ 𝑀 = (toCyc‘𝐷) |
64 | 62, 26, 41, 63, 27 | cycpmgcl 31420 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 3 ∈
(0...𝑁)) → 𝐶 ⊆ (Base‘𝑆)) |
65 | 8, 61, 64 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑆)) |
66 | | cyc3conja.t |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ 𝐶) |
67 | 65, 66 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (Base‘𝑆)) |
68 | 67 | ad8antr 737 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑇 ∈ (Base‘𝑆)) |
69 | 63, 10, 15, 17, 19, 22 | cycpm2tr 31386 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑀‘〈“𝑥𝑦”〉) = ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) |
70 | 69 | reseq1d 5890 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑀‘〈“𝑥𝑦”〉) ↾ ran 𝑢) = (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ↾ ran 𝑢)) |
71 | 15, 17 | s2cld 14584 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 〈“𝑥𝑦”〉 ∈ Word 𝐷) |
72 | 15, 17, 19 | s2f1 31219 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 〈“𝑥𝑦”〉:dom 〈“𝑥𝑦”〉–1-1→𝐷) |
73 | 63, 10, 71, 72 | tocycfvres2 31378 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑀‘〈“𝑥𝑦”〉) ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) = ( I ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉))) |
74 | 73 | reseq1d 5890 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑀‘〈“𝑥𝑦”〉) ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) ↾ ran 𝑢) = (( I ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) ↾ ran 𝑢)) |
75 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) |
76 | 75 | elin1d 4132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
77 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) |
78 | | dmeq 5812 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) |
79 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) |
80 | 77, 78, 79 | f1eq123d 6708 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
81 | 80 | elrab 3624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
82 | 76, 81 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
83 | 82 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑢:dom 𝑢–1-1→𝐷) |
84 | | f1f 6670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢:dom 𝑢–1-1→𝐷 → 𝑢:dom 𝑢⟶𝐷) |
85 | | frn 6607 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢:dom 𝑢⟶𝐷 → ran 𝑢 ⊆ 𝐷) |
86 | 83, 84, 85 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → ran 𝑢 ⊆ 𝐷) |
87 | 86 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ran 𝑢 ⊆ 𝐷) |
88 | 14, 16 | prssd 4755 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → {𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢)) |
89 | | ssconb 4072 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥, 𝑦} ⊆ 𝐷 ∧ ran 𝑢 ⊆ 𝐷) → ({𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢) ↔ ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦}))) |
90 | 89 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((({𝑥, 𝑦} ⊆ 𝐷 ∧ ran 𝑢 ⊆ 𝐷) ∧ {𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢)) → ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦})) |
91 | 18, 87, 88, 90 | syl21anc 835 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦})) |
92 | 14, 16 | s2rn 31218 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ran 〈“𝑥𝑦”〉 = {𝑥, 𝑦}) |
93 | 92 | difeq2d 4057 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝐷 ∖ ran 〈“𝑥𝑦”〉) = (𝐷 ∖ {𝑥, 𝑦})) |
94 | 91, 93 | sseqtrrd 3962 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ran 𝑢 ⊆ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) |
95 | 94 | resabs1d 5922 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑀‘〈“𝑥𝑦”〉) ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) ↾ ran 𝑢) = ((𝑀‘〈“𝑥𝑦”〉) ↾ ran 𝑢)) |
96 | 94 | resabs1d 5922 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (( I ↾ (𝐷 ∖ ran 〈“𝑥𝑦”〉)) ↾ ran 𝑢) = ( I ↾ ran 𝑢)) |
97 | 74, 95, 96 | 3eqtr3d 2786 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑀‘〈“𝑥𝑦”〉) ↾ ran 𝑢) = ( I ↾ ran 𝑢)) |
98 | 70, 97 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ↾ ran 𝑢) = ( I ↾ ran 𝑢)) |
99 | | simp-4r 781 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑀‘𝑢) = 𝑇) |
100 | 99 | reseq1d 5890 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = (𝑇 ↾ (𝐷 ∖ ran 𝑢))) |
101 | 82 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑢 ∈ Word 𝐷) |
102 | 101 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑢 ∈ Word 𝐷) |
103 | 83 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑢:dom 𝑢–1-1→𝐷) |
104 | 63, 10, 102, 103 | tocycfvres2 31378 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
105 | 100, 104 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑇 ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
106 | | disjdif 4405 |
. . . . . . . . . . . . 13
⊢ (ran
𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅ |
107 | 106 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) |
108 | | undif 4415 |
. . . . . . . . . . . . 13
⊢ (ran
𝑢 ⊆ 𝐷 ↔ (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
109 | 87, 108 | sylib 217 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
110 | 26, 27, 39, 68, 98, 105, 107, 109 | symgcom 31352 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇) = (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
111 | 110 | coeq2d 5771 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇)) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
112 | | cyc3conja.p |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘𝑆) |
113 | 26, 27, 112 | symgov 18991 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
114 | 11, 39, 113 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
115 | 26, 27, 112 | symgcl 18992 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆)) |
116 | 11, 39, 115 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆)) |
117 | 114, 116 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆)) |
118 | 26, 27, 112 | symgov 18991 |
. . . . . . . . . . . 12
⊢ (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇)) |
119 | 117, 68, 118 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇)) |
120 | | coass 6169 |
. . . . . . . . . . 11
⊢ ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇) = (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇)) |
121 | 119, 120 | eqtrdi 2794 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇))) |
122 | | coass 6169 |
. . . . . . . . . . 11
⊢ ((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
123 | 122 | a1i 11 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
124 | 111, 121,
123 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
125 | | cnvco 5794 |
. . . . . . . . . 10
⊢ ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔) |
126 | 125 | a1i 11 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔)) |
127 | 124, 126 | coeq12d 5773 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔))) |
128 | | coass 6169 |
. . . . . . . . . 10
⊢ ((((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ◡𝑔) = (((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔)) |
129 | | coass 6169 |
. . . . . . . . . . 11
⊢ (((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) |
130 | 129 | coeq1i 5768 |
. . . . . . . . . 10
⊢ ((((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ◡𝑔) = (((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ ◡𝑔) |
131 | 128, 130 | eqtr3i 2768 |
. . . . . . . . 9
⊢ (((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔)) = (((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ ◡𝑔) |
132 | 131 | a1i 11 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ 𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡𝑔)) = (((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ ◡𝑔)) |
133 | 26, 27, 112 | symgov 18991 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → (𝑔 + 𝑇) = (𝑔 ∘ 𝑇)) |
134 | 11, 68, 133 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 + 𝑇) = (𝑔 ∘ 𝑇)) |
135 | 26, 27, 112 | symgcl 18992 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → (𝑔 + 𝑇) ∈ (Base‘𝑆)) |
136 | 11, 68, 135 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 + 𝑇) ∈ (Base‘𝑆)) |
137 | 134, 136 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (𝑔 ∘ 𝑇) ∈ (Base‘𝑆)) |
138 | 26, 27 | symgbasf 18983 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∘ 𝑇) ∈ (Base‘𝑆) → (𝑔 ∘ 𝑇):𝐷⟶𝐷) |
139 | | fcoi1 6648 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∘ 𝑇):𝐷⟶𝐷 → ((𝑔 ∘ 𝑇) ∘ ( I ↾ 𝐷)) = (𝑔 ∘ 𝑇)) |
140 | 137, 138,
139 | 3syl 18 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ 𝑇) ∘ ( I ↾ 𝐷)) = (𝑔 ∘ 𝑇)) |
141 | 26, 27 | elsymgbas 18981 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ Fin →
(((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆) ↔ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷–1-1-onto→𝐷)) |
142 | 141 | biimpa 477 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧
((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷–1-1-onto→𝐷) |
143 | 10, 39, 142 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷–1-1-onto→𝐷) |
144 | | f1ococnv2 6743 |
. . . . . . . . . . . . 13
⊢
(((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷–1-1-onto→𝐷 → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ( I ↾ 𝐷)) |
145 | 143, 144 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ( I ↾ 𝐷)) |
146 | 145 | coeq2d 5771 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = ((𝑔 ∘ 𝑇) ∘ ( I ↾ 𝐷))) |
147 | 140, 146,
134 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (𝑔 + 𝑇)) |
148 | 147 | coeq1d 5770 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ ◡𝑔) = ((𝑔 + 𝑇) ∘ ◡𝑔)) |
149 | | cyc3conja.l |
. . . . . . . . . . 11
⊢ − =
(-g‘𝑆) |
150 | 26, 27, 149 | symgsubg 31356 |
. . . . . . . . . 10
⊢ (((𝑔 + 𝑇) ∈ (Base‘𝑆) ∧ 𝑔 ∈ (Base‘𝑆)) → ((𝑔 + 𝑇) − 𝑔) = ((𝑔 + 𝑇) ∘ ◡𝑔)) |
151 | 136, 11, 150 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 + 𝑇) − 𝑔) = ((𝑔 + 𝑇) ∘ ◡𝑔)) |
152 | 148, 151 | eqtr4d 2781 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ 𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ◡((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ ◡𝑔) = ((𝑔 + 𝑇) − 𝑔)) |
153 | 127, 132,
152 | 3eqtrd 2782 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = ((𝑔 + 𝑇) − 𝑔)) |
154 | 26 | symggrp 19008 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ Fin → 𝑆 ∈ Grp) |
155 | 8, 154 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Grp) |
156 | 155 | ad8antr 737 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑆 ∈ Grp) |
157 | 27, 112 | grpcl 18585 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆)) |
158 | 156, 117,
68, 157 | syl3anc 1370 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆)) |
159 | 26, 27, 149 | symgsubg 31356 |
. . . . . . . 8
⊢ ((((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆) ∧ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆)) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) − (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
160 | 158, 117,
159 | syl2anc 584 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) − (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ ◡(𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
161 | | simp-7r 787 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑄 = ((𝑔 + 𝑇) − 𝑔)) |
162 | 153, 160,
161 | 3eqtr4rd 2789 |
. . . . . 6
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → 𝑄 = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) − (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))) |
163 | 34, 38, 162 | rspcedvd 3563 |
. . . . 5
⊢
(((((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥 ≠ 𝑦) → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
164 | 8 | difexd 5253 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ∖ ran 𝑢) ∈ V) |
165 | 164 | ad5antr 731 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (𝐷 ∖ ran 𝑢) ∈ V) |
166 | | 3p2e5 12124 |
. . . . . . . . . . 11
⊢ (3 + 2) =
5 |
167 | 166, 59 | eqbrtrid 5109 |
. . . . . . . . . 10
⊢ (𝜑 → (3 + 2) ≤ 𝑁) |
168 | | 2re 12047 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
169 | 168 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) |
170 | 49, 169, 55 | leaddsub2d 11577 |
. . . . . . . . . 10
⊢ (𝜑 → ((3 + 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 − 3))) |
171 | 167, 170 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 2 ≤ (𝑁 − 3)) |
172 | 171 | ad5antr 731 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 2 ≤ (𝑁 − 3)) |
173 | 41 | a1i 11 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑁 = (♯‘𝐷)) |
174 | 75 | elin2d 4133 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 𝑢 ∈ (◡♯ “ {3})) |
175 | | hashf 14052 |
. . . . . . . . . . . . 13
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
176 | | ffn 6600 |
. . . . . . . . . . . . 13
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → ♯
Fn V) |
177 | | fniniseg 6937 |
. . . . . . . . . . . . 13
⊢ (♯
Fn V → (𝑢 ∈
(◡♯ “ {3}) ↔ (𝑢 ∈ V ∧
(♯‘𝑢) =
3))) |
178 | 175, 176,
177 | mp2b 10 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (◡♯ “ {3}) ↔ (𝑢 ∈ V ∧
(♯‘𝑢) =
3)) |
179 | 178 | simprbi 497 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (◡♯ “ {3}) →
(♯‘𝑢) =
3) |
180 | 174, 179 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (♯‘𝑢) = 3) |
181 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V |
182 | 181 | dmex 7758 |
. . . . . . . . . . 11
⊢ dom 𝑢 ∈ V |
183 | | hashf1rn 14067 |
. . . . . . . . . . 11
⊢ ((dom
𝑢 ∈ V ∧ 𝑢:dom 𝑢–1-1→𝐷) → (♯‘𝑢) = (♯‘ran 𝑢)) |
184 | 182, 83, 183 | sylancr 587 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (♯‘𝑢) = (♯‘ran 𝑢)) |
185 | 180, 184 | eqtr3d 2780 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 3 = (♯‘ran 𝑢)) |
186 | 173, 185 | oveq12d 7293 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (𝑁 − 3) = ((♯‘𝐷) − (♯‘ran
𝑢))) |
187 | 172, 186 | breqtrd 5100 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 2 ≤ ((♯‘𝐷) − (♯‘ran
𝑢))) |
188 | | hashssdif 14127 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
189 | 9, 86, 188 | syl2anc 584 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
190 | 187, 189 | breqtrrd 5102 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → 2 ≤ (♯‘(𝐷 ∖ ran 𝑢))) |
191 | | hashge2el2dif 14194 |
. . . . . 6
⊢ (((𝐷 ∖ ran 𝑢) ∈ V ∧ 2 ≤ (♯‘(𝐷 ∖ ran 𝑢))) → ∃𝑥 ∈ (𝐷 ∖ ran 𝑢)∃𝑦 ∈ (𝐷 ∖ ran 𝑢)𝑥 ≠ 𝑦) |
192 | 165, 190,
191 | syl2anc 584 |
. . . . 5
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → ∃𝑥 ∈ (𝐷 ∖ ran 𝑢)∃𝑦 ∈ (𝐷 ∖ ran 𝑢)𝑥 ≠ 𝑦) |
193 | 163, 192 | r19.29vva 3266 |
. . . 4
⊢
((((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧ (𝑀‘𝑢) = 𝑇) → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
194 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑢𝑀 |
195 | 63, 26, 27 | tocycf 31384 |
. . . . . . 7
⊢ (𝐷 ∈ Fin → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
196 | | ffn 6600 |
. . . . . . 7
⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
197 | 8, 195, 196 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
198 | 66, 62 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ (𝑀 “ (◡♯ “ {3}))) |
199 | 194, 197,
198 | fvelimad 6836 |
. . . . 5
⊢ (𝜑 → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))(𝑀‘𝑢) = 𝑇) |
200 | 199 | ad3antrrr 727 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))(𝑀‘𝑢) = 𝑇) |
201 | 193, 200 | r19.29a 3218 |
. . 3
⊢ ((((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) ∧ ¬ 𝑔 ∈ 𝐴) → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
202 | 7, 201 | pm2.61dan 810 |
. 2
⊢ (((𝜑 ∧ 𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) − 𝑔)) → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |
203 | | cyc3conja.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝐶) |
204 | 62, 26, 41, 63, 27, 112, 149, 61, 8, 203, 66 | cycpmconjs 31423 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ (Base‘𝑆)𝑄 = ((𝑔 + 𝑇) − 𝑔)) |
205 | 202, 204 | r19.29a 3218 |
1
⊢ (𝜑 → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) |