Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3conja Structured version   Visualization version   GIF version

Theorem cyc3conja 32787
Description: All 3-cycles are conjugate in the alternating group An for n>= 5. Property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
cyc3conja.c 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3conja.a 𝐴 = (pmEven‘𝐷)
cyc3conja.s 𝑆 = (SymGrp‘𝐷)
cyc3conja.n 𝑁 = (♯‘𝐷)
cyc3conja.m 𝑀 = (toCyc‘𝐷)
cyc3conja.p + = (+g𝑆)
cyc3conja.l = (-g𝑆)
cyc3conja.1 (𝜑 → 5 ≤ 𝑁)
cyc3conja.d (𝜑𝐷 ∈ Fin)
cyc3conja.q (𝜑𝑄𝐶)
cyc3conja.t (𝜑𝑇𝐶)
Assertion
Ref Expression
cyc3conja (𝜑 → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
Distinct variable groups:   + ,𝑝   ,𝑝   𝐴,𝑝   𝐷,𝑝   𝑀,𝑝   𝑄,𝑝   𝑆,𝑝   𝑇,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑁(𝑝)

Proof of Theorem cyc3conja
Dummy variables 𝑔 𝑢 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) → 𝑔𝐴)
2 simpr 484 . . . . . . 7 (((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) ∧ 𝑝 = 𝑔) → 𝑝 = 𝑔)
32oveq1d 7417 . . . . . 6 (((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) ∧ 𝑝 = 𝑔) → (𝑝 + 𝑇) = (𝑔 + 𝑇))
43, 2oveq12d 7420 . . . . 5 (((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) ∧ 𝑝 = 𝑔) → ((𝑝 + 𝑇) 𝑝) = ((𝑔 + 𝑇) 𝑔))
54eqeq2d 2735 . . . 4 (((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) ∧ 𝑝 = 𝑔) → (𝑄 = ((𝑝 + 𝑇) 𝑝) ↔ 𝑄 = ((𝑔 + 𝑇) 𝑔)))
6 simplr 766 . . . 4 ((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) → 𝑄 = ((𝑔 + 𝑇) 𝑔))
71, 5, 6rspcedvd 3606 . . 3 ((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ 𝑔𝐴) → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
8 cyc3conja.d . . . . . . . . 9 (𝜑𝐷 ∈ Fin)
98ad5antr 731 . . . . . . . 8 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝐷 ∈ Fin)
109ad3antrrr 727 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝐷 ∈ Fin)
11 simp-8r 789 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑔 ∈ (Base‘𝑆))
12 simp-6r 785 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ¬ 𝑔𝐴)
1311, 12eldifd 3952 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑔 ∈ ((Base‘𝑆) ∖ 𝐴))
14 simpllr 773 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝐷 ∖ ran 𝑢))
1514eldifad 3953 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑥𝐷)
16 simplr 766 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝐷 ∖ ran 𝑢))
1716eldifad 3953 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑦𝐷)
1815, 17prssd 4818 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → {𝑥, 𝑦} ⊆ 𝐷)
19 simpr 484 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑥𝑦)
20 enpr2 9994 . . . . . . . . . . 11 ((𝑥 ∈ (𝐷 ∖ ran 𝑢) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢) ∧ 𝑥𝑦) → {𝑥, 𝑦} ≈ 2o)
2114, 16, 19, 20syl3anc 1368 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → {𝑥, 𝑦} ≈ 2o)
22 eqid 2724 . . . . . . . . . . 11 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
23 eqid 2724 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
2422, 23pmtrrn 19369 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷))
2510, 18, 21, 24syl3anc 1368 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷))
26 cyc3conja.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
27 eqid 2724 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
2826, 27, 23pmtrodpm 21460 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ran (pmTrsp‘𝐷)) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ (pmEven‘𝐷)))
2910, 25, 28syl2anc 583 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ (pmEven‘𝐷)))
30 cyc3conja.a . . . . . . . . 9 𝐴 = (pmEven‘𝐷)
3130difeq2i 4112 . . . . . . . 8 ((Base‘𝑆) ∖ 𝐴) = ((Base‘𝑆) ∖ (pmEven‘𝐷))
3229, 31eleqtrrdi 2836 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ 𝐴))
3326, 27, 30odpmco 32718 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑔 ∈ ((Base‘𝑆) ∖ 𝐴) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ ((Base‘𝑆) ∖ 𝐴)) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ 𝐴)
3410, 13, 32, 33syl3anc 1368 . . . . . 6 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ 𝐴)
35 simpr 484 . . . . . . . . 9 ((((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
3635oveq1d 7417 . . . . . . . 8 ((((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → (𝑝 + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇))
3736, 35oveq12d 7420 . . . . . . 7 ((((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → ((𝑝 + 𝑇) 𝑝) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
3837eqeq2d 2735 . . . . . 6 ((((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) → (𝑄 = ((𝑝 + 𝑇) 𝑝) ↔ 𝑄 = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))))
3929eldifad 3953 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆))
40 0zd 12568 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
41 cyc3conja.n . . . . . . . . . . . . . . . . . 18 𝑁 = (♯‘𝐷)
42 hashcl 14314 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
438, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐷) ∈ ℕ0)
4441, 43eqeltrid 2829 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
4544nn0zd 12582 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
46 3z 12593 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℤ)
48 0red 11215 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
4947zred 12664 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
50 3pos 12315 . . . . . . . . . . . . . . . . . 18 0 < 3
5150a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 3)
5248, 49, 51ltled 11360 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 3)
53 5re 12297 . . . . . . . . . . . . . . . . . 18 5 ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ∈ ℝ)
5544nn0red 12531 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
56 3lt5 12388 . . . . . . . . . . . . . . . . . . 19 3 < 5
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 3 < 5)
5849, 54, 57ltled 11360 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≤ 5)
59 cyc3conja.1 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ≤ 𝑁)
6049, 54, 55, 58, 59letrd 11369 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑁)
6140, 45, 47, 52, 60elfzd 13490 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ (0...𝑁))
62 cyc3conja.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑀 “ (♯ “ {3}))
63 cyc3conja.m . . . . . . . . . . . . . . . 16 𝑀 = (toCyc‘𝐷)
6462, 26, 41, 63, 27cycpmgcl 32783 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 3 ∈ (0...𝑁)) → 𝐶 ⊆ (Base‘𝑆))
658, 61, 64syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ (Base‘𝑆))
66 cyc3conja.t . . . . . . . . . . . . . 14 (𝜑𝑇𝐶)
6765, 66sseldd 3976 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (Base‘𝑆))
6867ad8antr 737 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑇 ∈ (Base‘𝑆))
6963, 10, 15, 17, 19, 22cycpm2tr 32749 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑀‘⟨“𝑥𝑦”⟩) = ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))
7069reseq1d 5971 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑀‘⟨“𝑥𝑦”⟩) ↾ ran 𝑢) = (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ↾ ran 𝑢))
7115, 17s2cld 14820 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ⟨“𝑥𝑦”⟩ ∈ Word 𝐷)
7215, 17, 19s2f1 32581 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ⟨“𝑥𝑦”⟩:dom ⟨“𝑥𝑦”⟩–1-1𝐷)
7363, 10, 71, 72tocycfvres2 32741 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑀‘⟨“𝑥𝑦”⟩) ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)) = ( I ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)))
7473reseq1d 5971 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑀‘⟨“𝑥𝑦”⟩) ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)) ↾ ran 𝑢) = (( I ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)) ↾ ran 𝑢))
75 simplr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3})))
7675elin1d 4191 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
77 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑢𝑤 = 𝑢)
78 dmeq 5894 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
79 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑢𝐷 = 𝐷)
8077, 78, 79f1eq123d 6816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
8180elrab 3676 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
8276, 81sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
8382simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑢:dom 𝑢1-1𝐷)
84 f1f 6778 . . . . . . . . . . . . . . . . . . 19 (𝑢:dom 𝑢1-1𝐷𝑢:dom 𝑢𝐷)
85 frn 6715 . . . . . . . . . . . . . . . . . . 19 (𝑢:dom 𝑢𝐷 → ran 𝑢𝐷)
8683, 84, 853syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → ran 𝑢𝐷)
8786ad3antrrr 727 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ran 𝑢𝐷)
8814, 16prssd 4818 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → {𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢))
89 ssconb 4130 . . . . . . . . . . . . . . . . . 18 (({𝑥, 𝑦} ⊆ 𝐷 ∧ ran 𝑢𝐷) → ({𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢) ↔ ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦})))
9089biimpa 476 . . . . . . . . . . . . . . . . 17 ((({𝑥, 𝑦} ⊆ 𝐷 ∧ ran 𝑢𝐷) ∧ {𝑥, 𝑦} ⊆ (𝐷 ∖ ran 𝑢)) → ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦}))
9118, 87, 88, 90syl21anc 835 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ran 𝑢 ⊆ (𝐷 ∖ {𝑥, 𝑦}))
9214, 16s2rn 32580 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ran ⟨“𝑥𝑦”⟩ = {𝑥, 𝑦})
9392difeq2d 4115 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝐷 ∖ ran ⟨“𝑥𝑦”⟩) = (𝐷 ∖ {𝑥, 𝑦}))
9491, 93sseqtrrd 4016 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ran 𝑢 ⊆ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩))
9594resabs1d 6003 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑀‘⟨“𝑥𝑦”⟩) ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)) ↾ ran 𝑢) = ((𝑀‘⟨“𝑥𝑦”⟩) ↾ ran 𝑢))
9694resabs1d 6003 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (( I ↾ (𝐷 ∖ ran ⟨“𝑥𝑦”⟩)) ↾ ran 𝑢) = ( I ↾ ran 𝑢))
9774, 95, 963eqtr3d 2772 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑀‘⟨“𝑥𝑦”⟩) ↾ ran 𝑢) = ( I ↾ ran 𝑢))
9870, 97eqtr3d 2766 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ↾ ran 𝑢) = ( I ↾ ran 𝑢))
99 simp-4r 781 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑀𝑢) = 𝑇)
10099reseq1d 5971 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑀𝑢) ↾ (𝐷 ∖ ran 𝑢)) = (𝑇 ↾ (𝐷 ∖ ran 𝑢)))
10182simpld 494 . . . . . . . . . . . . . . 15 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑢 ∈ Word 𝐷)
102101ad3antrrr 727 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑢 ∈ Word 𝐷)
10383ad3antrrr 727 . . . . . . . . . . . . . 14 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑢:dom 𝑢1-1𝐷)
10463, 10, 102, 103tocycfvres2 32741 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑀𝑢) ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢)))
105100, 104eqtr3d 2766 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑇 ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢)))
106 disjdif 4464 . . . . . . . . . . . . 13 (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅
107106a1i 11 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅)
108 undif 4474 . . . . . . . . . . . . 13 (ran 𝑢𝐷 ↔ (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷)
10987, 108sylib 217 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷)
11026, 27, 39, 68, 98, 105, 107, 109symgcom 32715 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇) = (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
111110coeq2d 5853 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇)) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
112 cyc3conja.p . . . . . . . . . . . . . . 15 + = (+g𝑆)
11326, 27, 112symgov 19295 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
11411, 39, 113syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
11526, 27, 112symgcl 19296 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆))
11611, 39, 115syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 + ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆))
117114, 116eqeltrrd 2826 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆))
11826, 27, 112symgov 19295 . . . . . . . . . . . 12 (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇))
119117, 68, 118syl2anc 583 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇))
120 coass 6255 . . . . . . . . . . 11 ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑇) = (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇))
121119, 120eqtrdi 2780 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = (𝑔 ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑇)))
122 coass 6255 . . . . . . . . . . 11 ((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
123122a1i 11 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
124111, 121, 1233eqtr4d 2774 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) = ((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
125 cnvco 5876 . . . . . . . . . 10 (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔)
126125a1i 11 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔))
127124, 126coeq12d 5855 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔)))
128 coass 6255 . . . . . . . . . 10 ((((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑔) = (((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔))
129 coass 6255 . . . . . . . . . . 11 (((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})))
130129coeq1i 5850 . . . . . . . . . 10 ((((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ 𝑔) = (((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ 𝑔)
131128, 130eqtr3i 2754 . . . . . . . . 9 (((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔)) = (((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ 𝑔)
132131a1i 11 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔𝑇) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ 𝑔)) = (((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ 𝑔))
13326, 27, 112symgov 19295 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → (𝑔 + 𝑇) = (𝑔𝑇))
13411, 68, 133syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 + 𝑇) = (𝑔𝑇))
13526, 27, 112symgcl 19296 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → (𝑔 + 𝑇) ∈ (Base‘𝑆))
13611, 68, 135syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔 + 𝑇) ∈ (Base‘𝑆))
137134, 136eqeltrrd 2826 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (𝑔𝑇) ∈ (Base‘𝑆))
13826, 27symgbasf 19287 . . . . . . . . . . . 12 ((𝑔𝑇) ∈ (Base‘𝑆) → (𝑔𝑇):𝐷𝐷)
139 fcoi1 6756 . . . . . . . . . . . 12 ((𝑔𝑇):𝐷𝐷 → ((𝑔𝑇) ∘ ( I ↾ 𝐷)) = (𝑔𝑇))
140137, 138, 1393syl 18 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔𝑇) ∘ ( I ↾ 𝐷)) = (𝑔𝑇))
14126, 27elsymgbas 19285 . . . . . . . . . . . . . . 15 (𝐷 ∈ Fin → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆) ↔ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷1-1-onto𝐷))
142141biimpa 476 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∈ (Base‘𝑆)) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷1-1-onto𝐷)
14310, 39, 142syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷1-1-onto𝐷)
144 f1ococnv2 6851 . . . . . . . . . . . . 13 (((pmTrsp‘𝐷)‘{𝑥, 𝑦}):𝐷1-1-onto𝐷 → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ( I ↾ 𝐷))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) = ( I ↾ 𝐷))
146145coeq2d 5853 . . . . . . . . . . 11 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = ((𝑔𝑇) ∘ ( I ↾ 𝐷)))
147140, 146, 1343eqtr4d 2774 . . . . . . . . . 10 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (𝑔 + 𝑇))
148147coeq1d 5852 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ 𝑔) = ((𝑔 + 𝑇) ∘ 𝑔))
149 cyc3conja.l . . . . . . . . . . 11 = (-g𝑆)
15026, 27, 149symgsubg 32719 . . . . . . . . . 10 (((𝑔 + 𝑇) ∈ (Base‘𝑆) ∧ 𝑔 ∈ (Base‘𝑆)) → ((𝑔 + 𝑇) 𝑔) = ((𝑔 + 𝑇) ∘ 𝑔))
151136, 11, 150syl2anc 583 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔 + 𝑇) 𝑔) = ((𝑔 + 𝑇) ∘ 𝑔))
152148, 151eqtr4d 2767 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔𝑇) ∘ (((pmTrsp‘𝐷)‘{𝑥, 𝑦}) ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) ∘ 𝑔) = ((𝑔 + 𝑇) 𝑔))
153127, 132, 1523eqtrd 2768 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = ((𝑔 + 𝑇) 𝑔))
15426symggrp 19312 . . . . . . . . . . 11 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
1558, 154syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
156155ad8antr 737 . . . . . . . . 9 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑆 ∈ Grp)
15727, 112grpcl 18863 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆) ∧ 𝑇 ∈ (Base‘𝑆)) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆))
158156, 117, 68, 157syl3anc 1368 . . . . . . . 8 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆))
15926, 27, 149symgsubg 32719 . . . . . . . 8 ((((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∈ (Base‘𝑆) ∧ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) ∈ (Base‘𝑆)) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
160158, 117, 159syl2anc 583 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))) = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) ∘ (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
161 simp-7r 787 . . . . . . 7 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑄 = ((𝑔 + 𝑇) 𝑔))
162153, 160, 1613eqtr4rd 2775 . . . . . 6 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → 𝑄 = (((𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦})) + 𝑇) (𝑔 ∘ ((pmTrsp‘𝐷)‘{𝑥, 𝑦}))))
16334, 38, 162rspcedvd 3606 . . . . 5 (((((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) ∧ 𝑥 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑦 ∈ (𝐷 ∖ ran 𝑢)) ∧ 𝑥𝑦) → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
1648difexd 5320 . . . . . . 7 (𝜑 → (𝐷 ∖ ran 𝑢) ∈ V)
165164ad5antr 731 . . . . . 6 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (𝐷 ∖ ran 𝑢) ∈ V)
166 3p2e5 12361 . . . . . . . . . . 11 (3 + 2) = 5
167166, 59eqbrtrid 5174 . . . . . . . . . 10 (𝜑 → (3 + 2) ≤ 𝑁)
168 2re 12284 . . . . . . . . . . . 12 2 ∈ ℝ
169168a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
17049, 169, 55leaddsub2d 11814 . . . . . . . . . 10 (𝜑 → ((3 + 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 − 3)))
171167, 170mpbid 231 . . . . . . . . 9 (𝜑 → 2 ≤ (𝑁 − 3))
172171ad5antr 731 . . . . . . . 8 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 2 ≤ (𝑁 − 3))
17341a1i 11 . . . . . . . . 9 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑁 = (♯‘𝐷))
17475elin2d 4192 . . . . . . . . . . 11 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 𝑢 ∈ (♯ “ {3}))
175 hashf 14296 . . . . . . . . . . . . 13 ♯:V⟶(ℕ0 ∪ {+∞})
176 ffn 6708 . . . . . . . . . . . . 13 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
177 fniniseg 7052 . . . . . . . . . . . . 13 (♯ Fn V → (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 3)))
178175, 176, 177mp2b 10 . . . . . . . . . . . 12 (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 3))
179178simprbi 496 . . . . . . . . . . 11 (𝑢 ∈ (♯ “ {3}) → (♯‘𝑢) = 3)
180174, 179syl 17 . . . . . . . . . 10 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (♯‘𝑢) = 3)
181 vex 3470 . . . . . . . . . . . 12 𝑢 ∈ V
182181dmex 7896 . . . . . . . . . . 11 dom 𝑢 ∈ V
183 hashf1rn 14310 . . . . . . . . . . 11 ((dom 𝑢 ∈ V ∧ 𝑢:dom 𝑢1-1𝐷) → (♯‘𝑢) = (♯‘ran 𝑢))
184182, 83, 183sylancr 586 . . . . . . . . . 10 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (♯‘𝑢) = (♯‘ran 𝑢))
185180, 184eqtr3d 2766 . . . . . . . . 9 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 3 = (♯‘ran 𝑢))
186173, 185oveq12d 7420 . . . . . . . 8 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (𝑁 − 3) = ((♯‘𝐷) − (♯‘ran 𝑢)))
187172, 186breqtrd 5165 . . . . . . 7 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 2 ≤ ((♯‘𝐷) − (♯‘ran 𝑢)))
188 hashssdif 14370 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ran 𝑢𝐷) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢)))
1899, 86, 188syl2anc 583 . . . . . . 7 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢)))
190187, 189breqtrrd 5167 . . . . . 6 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → 2 ≤ (♯‘(𝐷 ∖ ran 𝑢)))
191 hashge2el2dif 14439 . . . . . 6 (((𝐷 ∖ ran 𝑢) ∈ V ∧ 2 ≤ (♯‘(𝐷 ∖ ran 𝑢))) → ∃𝑥 ∈ (𝐷 ∖ ran 𝑢)∃𝑦 ∈ (𝐷 ∖ ran 𝑢)𝑥𝑦)
192165, 190, 191syl2anc 583 . . . . 5 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → ∃𝑥 ∈ (𝐷 ∖ ran 𝑢)∃𝑦 ∈ (𝐷 ∖ ran 𝑢)𝑥𝑦)
193163, 192r19.29vva 3205 . . . 4 ((((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ (𝑀𝑢) = 𝑇) → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
194 nfcv 2895 . . . . . 6 𝑢𝑀
19563, 26, 27tocycf 32747 . . . . . . 7 (𝐷 ∈ Fin → 𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
196 ffn 6708 . . . . . . 7 (𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆) → 𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
1978, 195, 1963syl 18 . . . . . 6 (𝜑𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
19866, 62eleqtrdi 2835 . . . . . 6 (𝜑𝑇 ∈ (𝑀 “ (♯ “ {3})))
199194, 197, 198fvelimad 6950 . . . . 5 (𝜑 → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))(𝑀𝑢) = 𝑇)
200199ad3antrrr 727 . . . 4 ((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))(𝑀𝑢) = 𝑇)
201193, 200r19.29a 3154 . . 3 ((((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) ∧ ¬ 𝑔𝐴) → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
2027, 201pm2.61dan 810 . 2 (((𝜑𝑔 ∈ (Base‘𝑆)) ∧ 𝑄 = ((𝑔 + 𝑇) 𝑔)) → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
203 cyc3conja.q . . 3 (𝜑𝑄𝐶)
20462, 26, 41, 63, 27, 112, 149, 61, 8, 203, 66cycpmconjs 32786 . 2 (𝜑 → ∃𝑔 ∈ (Base‘𝑆)𝑄 = ((𝑔 + 𝑇) 𝑔))
205202, 204r19.29a 3154 1 (𝜑 → ∃𝑝𝐴 𝑄 = ((𝑝 + 𝑇) 𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wrex 3062  {crab 3424  Vcvv 3466  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4315  {csn 4621  {cpr 4623   class class class wbr 5139   I cid 5564  ccnv 5666  dom cdm 5667  ran crn 5668  cres 5669  cima 5670  ccom 5671   Fn wfn 6529  wf 6530  1-1wf1 6531  1-1-ontowf1o 6533  cfv 6534  (class class class)co 7402  2oc2o 8456  cen 8933  Fincfn 8936  cr 11106  0cc0 11107   + caddc 11110  +∞cpnf 11243   < clt 11246  cle 11247  cmin 11442  2c2 12265  3c3 12266  5c5 12268  0cn0 12470  cz 12556  ...cfz 13482  chash 14288  Word cword 14462  ⟨“cs2 14790  Basecbs 17145  +gcplusg 17198  Grpcgrp 18855  -gcsg 18857  SymGrpcsymg 19278  pmTrspcpmtr 19353  pmEvencevpm 19402  toCycctocyc 32736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-ot 4630  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-dju 9893  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-xnn0 12543  df-z 12557  df-dec 12676  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-fl 13755  df-mod 13833  df-seq 13965  df-exp 14026  df-hash 14289  df-word 14463  df-lsw 14511  df-concat 14519  df-s1 14544  df-substr 14589  df-pfx 14619  df-splice 14698  df-reverse 14707  df-csh 14737  df-s2 14797  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-0g 17388  df-gsum 17389  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-efmnd 18786  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19042  df-ghm 19131  df-gim 19176  df-oppg 19254  df-symg 19279  df-pmtr 19354  df-psgn 19403  df-evpm 19404  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-cring 20133  df-oppr 20228  df-dvdsr 20251  df-unit 20252  df-invr 20282  df-dvr 20295  df-drng 20581  df-cnfld 21231  df-tocyc 32737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator