Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3conja Structured version   Visualization version   GIF version

Theorem cyc3conja 32750
Description: All 3-cycles are conjugate in the alternating group An for n>= 5. Property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
cyc3conja.c 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
cyc3conja.a 𝐴 = (pmEvenβ€˜π·)
cyc3conja.s 𝑆 = (SymGrpβ€˜π·)
cyc3conja.n 𝑁 = (β™―β€˜π·)
cyc3conja.m 𝑀 = (toCycβ€˜π·)
cyc3conja.p + = (+gβ€˜π‘†)
cyc3conja.l βˆ’ = (-gβ€˜π‘†)
cyc3conja.1 (πœ‘ β†’ 5 ≀ 𝑁)
cyc3conja.d (πœ‘ β†’ 𝐷 ∈ Fin)
cyc3conja.q (πœ‘ β†’ 𝑄 ∈ 𝐢)
cyc3conja.t (πœ‘ β†’ 𝑇 ∈ 𝐢)
Assertion
Ref Expression
cyc3conja (πœ‘ β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
Distinct variable groups:   + ,𝑝   βˆ’ ,𝑝   𝐴,𝑝   𝐷,𝑝   𝑀,𝑝   𝑄,𝑝   𝑆,𝑝   𝑇,𝑝   πœ‘,𝑝
Allowed substitution hints:   𝐢(𝑝)   𝑁(𝑝)

Proof of Theorem cyc3conja
Dummy variables 𝑔 𝑒 π‘₯ 𝑦 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) β†’ 𝑔 ∈ 𝐴)
2 simpr 484 . . . . . . 7 (((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) β†’ 𝑝 = 𝑔)
32oveq1d 7416 . . . . . 6 (((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) β†’ (𝑝 + 𝑇) = (𝑔 + 𝑇))
43, 2oveq12d 7419 . . . . 5 (((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) β†’ ((𝑝 + 𝑇) βˆ’ 𝑝) = ((𝑔 + 𝑇) βˆ’ 𝑔))
54eqeq2d 2735 . . . 4 (((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) ∧ 𝑝 = 𝑔) β†’ (𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝) ↔ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)))
6 simplr 766 . . . 4 ((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) β†’ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔))
71, 5, 6rspcedvd 3606 . . 3 ((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ 𝑔 ∈ 𝐴) β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
8 cyc3conja.d . . . . . . . . 9 (πœ‘ β†’ 𝐷 ∈ Fin)
98ad5antr 731 . . . . . . . 8 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝐷 ∈ Fin)
109ad3antrrr 727 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝐷 ∈ Fin)
11 simp-8r 789 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑔 ∈ (Baseβ€˜π‘†))
12 simp-6r 785 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ Β¬ 𝑔 ∈ 𝐴)
1311, 12eldifd 3951 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑔 ∈ ((Baseβ€˜π‘†) βˆ– 𝐴))
14 simpllr 773 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ π‘₯ ∈ (𝐷 βˆ– ran 𝑒))
1514eldifad 3952 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ π‘₯ ∈ 𝐷)
16 simplr 766 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑦 ∈ (𝐷 βˆ– ran 𝑒))
1716eldifad 3952 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑦 ∈ 𝐷)
1815, 17prssd 4817 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ {π‘₯, 𝑦} βŠ† 𝐷)
19 simpr 484 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ π‘₯ β‰  𝑦)
20 enpr2 9992 . . . . . . . . . . 11 ((π‘₯ ∈ (𝐷 βˆ– ran 𝑒) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒) ∧ π‘₯ β‰  𝑦) β†’ {π‘₯, 𝑦} β‰ˆ 2o)
2114, 16, 19, 20syl3anc 1368 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ {π‘₯, 𝑦} β‰ˆ 2o)
22 eqid 2724 . . . . . . . . . . 11 (pmTrspβ€˜π·) = (pmTrspβ€˜π·)
23 eqid 2724 . . . . . . . . . . 11 ran (pmTrspβ€˜π·) = ran (pmTrspβ€˜π·)
2422, 23pmtrrn 19366 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ {π‘₯, 𝑦} βŠ† 𝐷 ∧ {π‘₯, 𝑦} β‰ˆ 2o) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ran (pmTrspβ€˜π·))
2510, 18, 21, 24syl3anc 1368 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ran (pmTrspβ€˜π·))
26 cyc3conja.s . . . . . . . . . 10 𝑆 = (SymGrpβ€˜π·)
27 eqid 2724 . . . . . . . . . 10 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
2826, 27, 23pmtrodpm 21457 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ran (pmTrspβ€˜π·)) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ((Baseβ€˜π‘†) βˆ– (pmEvenβ€˜π·)))
2910, 25, 28syl2anc 583 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ((Baseβ€˜π‘†) βˆ– (pmEvenβ€˜π·)))
30 cyc3conja.a . . . . . . . . 9 𝐴 = (pmEvenβ€˜π·)
3130difeq2i 4111 . . . . . . . 8 ((Baseβ€˜π‘†) βˆ– 𝐴) = ((Baseβ€˜π‘†) βˆ– (pmEvenβ€˜π·))
3229, 31eleqtrrdi 2836 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ((Baseβ€˜π‘†) βˆ– 𝐴))
3326, 27, 30odpmco 32681 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑔 ∈ ((Baseβ€˜π‘†) βˆ– 𝐴) ∧ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ ((Baseβ€˜π‘†) βˆ– 𝐴)) β†’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ 𝐴)
3410, 13, 32, 33syl3anc 1368 . . . . . 6 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ 𝐴)
35 simpr 484 . . . . . . . . 9 ((((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) β†’ 𝑝 = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
3635oveq1d 7416 . . . . . . . 8 ((((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) β†’ (𝑝 + 𝑇) = ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇))
3736, 35oveq12d 7419 . . . . . . 7 ((((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) β†’ ((𝑝 + 𝑇) βˆ’ 𝑝) = (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) βˆ’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
3837eqeq2d 2735 . . . . . 6 ((((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) ∧ 𝑝 = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) β†’ (𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝) ↔ 𝑄 = (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) βˆ’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))))
3929eldifad 3952 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ (Baseβ€˜π‘†))
40 0zd 12566 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 0 ∈ β„€)
41 cyc3conja.n . . . . . . . . . . . . . . . . . 18 𝑁 = (β™―β€˜π·)
42 hashcl 14312 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ Fin β†’ (β™―β€˜π·) ∈ β„•0)
438, 42syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (β™―β€˜π·) ∈ β„•0)
4441, 43eqeltrid 2829 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑁 ∈ β„•0)
4544nn0zd 12580 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑁 ∈ β„€)
46 3z 12591 . . . . . . . . . . . . . . . . 17 3 ∈ β„€
4746a1i 11 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 3 ∈ β„€)
48 0red 11213 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 0 ∈ ℝ)
4947zred 12662 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 3 ∈ ℝ)
50 3pos 12313 . . . . . . . . . . . . . . . . . 18 0 < 3
5150a1i 11 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 0 < 3)
5248, 49, 51ltled 11358 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 0 ≀ 3)
53 5re 12295 . . . . . . . . . . . . . . . . . 18 5 ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 5 ∈ ℝ)
5544nn0red 12529 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑁 ∈ ℝ)
56 3lt5 12386 . . . . . . . . . . . . . . . . . . 19 3 < 5
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 3 < 5)
5849, 54, 57ltled 11358 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 3 ≀ 5)
59 cyc3conja.1 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 5 ≀ 𝑁)
6049, 54, 55, 58, 59letrd 11367 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 3 ≀ 𝑁)
6140, 45, 47, 52, 60elfzd 13488 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 3 ∈ (0...𝑁))
62 cyc3conja.c . . . . . . . . . . . . . . . 16 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
63 cyc3conja.m . . . . . . . . . . . . . . . 16 𝑀 = (toCycβ€˜π·)
6462, 26, 41, 63, 27cycpmgcl 32746 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 3 ∈ (0...𝑁)) β†’ 𝐢 βŠ† (Baseβ€˜π‘†))
658, 61, 64syl2anc 583 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐢 βŠ† (Baseβ€˜π‘†))
66 cyc3conja.t . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑇 ∈ 𝐢)
6765, 66sseldd 3975 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑇 ∈ (Baseβ€˜π‘†))
6867ad8antr 737 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑇 ∈ (Baseβ€˜π‘†))
6963, 10, 15, 17, 19, 22cycpm2tr 32712 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) = ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))
7069reseq1d 5970 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ ran 𝑒) = (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) β†Ύ ran 𝑒))
7115, 17s2cld 14818 . . . . . . . . . . . . . . . 16 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ βŸ¨β€œπ‘₯π‘¦β€βŸ© ∈ Word 𝐷)
7215, 17, 19s2f1 32544 . . . . . . . . . . . . . . . 16 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ βŸ¨β€œπ‘₯π‘¦β€βŸ©:dom βŸ¨β€œπ‘₯π‘¦β€βŸ©β€“1-1→𝐷)
7363, 10, 71, 72tocycfvres2 32704 . . . . . . . . . . . . . . 15 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)) = ( I β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)))
7473reseq1d 5970 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)) β†Ύ ran 𝑒) = (( I β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)) β†Ύ ran 𝑒))
75 simplr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3})))
7675elin1d 4190 . . . . . . . . . . . . . . . . . . . . 21 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑒 ∈ {𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷})
77 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 𝑒 β†’ 𝑀 = 𝑒)
78 dmeq 5893 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 𝑒 β†’ dom 𝑀 = dom 𝑒)
79 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 𝑒 β†’ 𝐷 = 𝐷)
8077, 78, 79f1eq123d 6815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 𝑒 β†’ (𝑀:dom 𝑀–1-1→𝐷 ↔ 𝑒:dom 𝑒–1-1→𝐷))
8180elrab 3675 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ {𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ↔ (𝑒 ∈ Word 𝐷 ∧ 𝑒:dom 𝑒–1-1→𝐷))
8276, 81sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (𝑒 ∈ Word 𝐷 ∧ 𝑒:dom 𝑒–1-1→𝐷))
8382simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑒:dom 𝑒–1-1→𝐷)
84 f1f 6777 . . . . . . . . . . . . . . . . . . 19 (𝑒:dom 𝑒–1-1→𝐷 β†’ 𝑒:dom π‘’βŸΆπ·)
85 frn 6714 . . . . . . . . . . . . . . . . . . 19 (𝑒:dom π‘’βŸΆπ· β†’ ran 𝑒 βŠ† 𝐷)
8683, 84, 853syl 18 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ ran 𝑒 βŠ† 𝐷)
8786ad3antrrr 727 . . . . . . . . . . . . . . . . 17 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ran 𝑒 βŠ† 𝐷)
8814, 16prssd 4817 . . . . . . . . . . . . . . . . 17 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ {π‘₯, 𝑦} βŠ† (𝐷 βˆ– ran 𝑒))
89 ssconb 4129 . . . . . . . . . . . . . . . . . 18 (({π‘₯, 𝑦} βŠ† 𝐷 ∧ ran 𝑒 βŠ† 𝐷) β†’ ({π‘₯, 𝑦} βŠ† (𝐷 βˆ– ran 𝑒) ↔ ran 𝑒 βŠ† (𝐷 βˆ– {π‘₯, 𝑦})))
9089biimpa 476 . . . . . . . . . . . . . . . . 17 ((({π‘₯, 𝑦} βŠ† 𝐷 ∧ ran 𝑒 βŠ† 𝐷) ∧ {π‘₯, 𝑦} βŠ† (𝐷 βˆ– ran 𝑒)) β†’ ran 𝑒 βŠ† (𝐷 βˆ– {π‘₯, 𝑦}))
9118, 87, 88, 90syl21anc 835 . . . . . . . . . . . . . . . 16 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ran 𝑒 βŠ† (𝐷 βˆ– {π‘₯, 𝑦}))
9214, 16s2rn 32543 . . . . . . . . . . . . . . . . 17 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ran βŸ¨β€œπ‘₯π‘¦β€βŸ© = {π‘₯, 𝑦})
9392difeq2d 4114 . . . . . . . . . . . . . . . 16 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©) = (𝐷 βˆ– {π‘₯, 𝑦}))
9491, 93sseqtrrd 4015 . . . . . . . . . . . . . . 15 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ran 𝑒 βŠ† (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©))
9594resabs1d 6002 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)) β†Ύ ran 𝑒) = ((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ ran 𝑒))
9694resabs1d 6002 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (( I β†Ύ (𝐷 βˆ– ran βŸ¨β€œπ‘₯π‘¦β€βŸ©)) β†Ύ ran 𝑒) = ( I β†Ύ ran 𝑒))
9774, 95, 963eqtr3d 2772 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((π‘€β€˜βŸ¨β€œπ‘₯π‘¦β€βŸ©) β†Ύ ran 𝑒) = ( I β†Ύ ran 𝑒))
9870, 97eqtr3d 2766 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) β†Ύ ran 𝑒) = ( I β†Ύ ran 𝑒))
99 simp-4r 781 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (π‘€β€˜π‘’) = 𝑇)
10099reseq1d 5970 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((π‘€β€˜π‘’) β†Ύ (𝐷 βˆ– ran 𝑒)) = (𝑇 β†Ύ (𝐷 βˆ– ran 𝑒)))
10182simpld 494 . . . . . . . . . . . . . . 15 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑒 ∈ Word 𝐷)
102101ad3antrrr 727 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑒 ∈ Word 𝐷)
10383ad3antrrr 727 . . . . . . . . . . . . . 14 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑒:dom 𝑒–1-1→𝐷)
10463, 10, 102, 103tocycfvres2 32704 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((π‘€β€˜π‘’) β†Ύ (𝐷 βˆ– ran 𝑒)) = ( I β†Ύ (𝐷 βˆ– ran 𝑒)))
105100, 104eqtr3d 2766 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑇 β†Ύ (𝐷 βˆ– ran 𝑒)) = ( I β†Ύ (𝐷 βˆ– ran 𝑒)))
106 disjdif 4463 . . . . . . . . . . . . 13 (ran 𝑒 ∩ (𝐷 βˆ– ran 𝑒)) = βˆ…
107106a1i 11 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (ran 𝑒 ∩ (𝐷 βˆ– ran 𝑒)) = βˆ…)
108 undif 4473 . . . . . . . . . . . . 13 (ran 𝑒 βŠ† 𝐷 ↔ (ran 𝑒 βˆͺ (𝐷 βˆ– ran 𝑒)) = 𝐷)
10987, 108sylib 217 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (ran 𝑒 βˆͺ (𝐷 βˆ– ran 𝑒)) = 𝐷)
11026, 27, 39, 68, 98, 105, 107, 109symgcom 32678 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ 𝑇) = (𝑇 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
111110coeq2d 5852 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ 𝑇)) = (𝑔 ∘ (𝑇 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
112 cyc3conja.p . . . . . . . . . . . . . . 15 + = (+gβ€˜π‘†)
11326, 27, 112symgov 19292 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Baseβ€˜π‘†) ∧ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ (Baseβ€˜π‘†)) β†’ (𝑔 + ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
11411, 39, 113syl2anc 583 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 + ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
11526, 27, 112symgcl 19293 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Baseβ€˜π‘†) ∧ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ (Baseβ€˜π‘†)) β†’ (𝑔 + ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†))
11611, 39, 115syl2anc 583 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 + ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†))
117114, 116eqeltrrd 2826 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†))
11826, 27, 112symgov 19292 . . . . . . . . . . . 12 (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†) ∧ 𝑇 ∈ (Baseβ€˜π‘†)) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ 𝑇))
119117, 68, 118syl2anc 583 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) = ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ 𝑇))
120 coass 6254 . . . . . . . . . . 11 ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ 𝑇) = (𝑔 ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ 𝑇))
121119, 120eqtrdi 2780 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) = (𝑔 ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ 𝑇)))
122 coass 6254 . . . . . . . . . . 11 ((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
123122a1i 11 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (𝑔 ∘ (𝑇 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
124111, 121, 1233eqtr4d 2774 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) = ((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
125 cnvco 5875 . . . . . . . . . 10 β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔)
126125a1i 11 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔))
127124, 126coeq12d 5854 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∘ β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = (((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔)))
128 coass 6254 . . . . . . . . . 10 ((((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ ◑𝑔) = (((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔))
129 coass 6254 . . . . . . . . . . 11 (((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = ((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})))
130129coeq1i 5849 . . . . . . . . . 10 ((((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ ◑𝑔) = (((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) ∘ ◑𝑔)
131128, 130eqtr3i 2754 . . . . . . . . 9 (((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔)) = (((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) ∘ ◑𝑔)
132131a1i 11 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ 𝑇) ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∘ (β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ ◑𝑔)) = (((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) ∘ ◑𝑔))
13326, 27, 112symgov 19292 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Baseβ€˜π‘†) ∧ 𝑇 ∈ (Baseβ€˜π‘†)) β†’ (𝑔 + 𝑇) = (𝑔 ∘ 𝑇))
13411, 68, 133syl2anc 583 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 + 𝑇) = (𝑔 ∘ 𝑇))
13526, 27, 112symgcl 19293 . . . . . . . . . . . . . 14 ((𝑔 ∈ (Baseβ€˜π‘†) ∧ 𝑇 ∈ (Baseβ€˜π‘†)) β†’ (𝑔 + 𝑇) ∈ (Baseβ€˜π‘†))
13611, 68, 135syl2anc 583 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 + 𝑇) ∈ (Baseβ€˜π‘†))
137134, 136eqeltrrd 2826 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (𝑔 ∘ 𝑇) ∈ (Baseβ€˜π‘†))
13826, 27symgbasf 19284 . . . . . . . . . . . 12 ((𝑔 ∘ 𝑇) ∈ (Baseβ€˜π‘†) β†’ (𝑔 ∘ 𝑇):𝐷⟢𝐷)
139 fcoi1 6755 . . . . . . . . . . . 12 ((𝑔 ∘ 𝑇):𝐷⟢𝐷 β†’ ((𝑔 ∘ 𝑇) ∘ ( I β†Ύ 𝐷)) = (𝑔 ∘ 𝑇))
140137, 138, 1393syl 18 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ 𝑇) ∘ ( I β†Ύ 𝐷)) = (𝑔 ∘ 𝑇))
14126, 27elsymgbas 19282 . . . . . . . . . . . . . . 15 (𝐷 ∈ Fin β†’ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ (Baseβ€˜π‘†) ↔ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}):𝐷–1-1-onto→𝐷))
142141biimpa 476 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∈ (Baseβ€˜π‘†)) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}):𝐷–1-1-onto→𝐷)
14310, 39, 142syl2anc 583 . . . . . . . . . . . . 13 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}):𝐷–1-1-onto→𝐷)
144 f1ococnv2 6850 . . . . . . . . . . . . 13 (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}):𝐷–1-1-onto→𝐷 β†’ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = ( I β†Ύ 𝐷))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) = ( I β†Ύ 𝐷))
146145coeq2d 5852 . . . . . . . . . . 11 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = ((𝑔 ∘ 𝑇) ∘ ( I β†Ύ 𝐷)))
147140, 146, 1343eqtr4d 2774 . . . . . . . . . 10 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = (𝑔 + 𝑇))
148147coeq1d 5851 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) ∘ ◑𝑔) = ((𝑔 + 𝑇) ∘ ◑𝑔))
149 cyc3conja.l . . . . . . . . . . 11 βˆ’ = (-gβ€˜π‘†)
15026, 27, 149symgsubg 32682 . . . . . . . . . 10 (((𝑔 + 𝑇) ∈ (Baseβ€˜π‘†) ∧ 𝑔 ∈ (Baseβ€˜π‘†)) β†’ ((𝑔 + 𝑇) βˆ’ 𝑔) = ((𝑔 + 𝑇) ∘ ◑𝑔))
151136, 11, 150syl2anc 583 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 + 𝑇) βˆ’ 𝑔) = ((𝑔 + 𝑇) ∘ ◑𝑔))
152148, 151eqtr4d 2767 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ 𝑇) ∘ (((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}) ∘ β—‘((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) ∘ ◑𝑔) = ((𝑔 + 𝑇) βˆ’ 𝑔))
153127, 132, 1523eqtrd 2768 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∘ β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = ((𝑔 + 𝑇) βˆ’ 𝑔))
15426symggrp 19309 . . . . . . . . . . 11 (𝐷 ∈ Fin β†’ 𝑆 ∈ Grp)
1558, 154syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑆 ∈ Grp)
156155ad8antr 737 . . . . . . . . 9 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑆 ∈ Grp)
15727, 112grpcl 18860 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†) ∧ 𝑇 ∈ (Baseβ€˜π‘†)) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∈ (Baseβ€˜π‘†))
158156, 117, 68, 157syl3anc 1368 . . . . . . . 8 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ ((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∈ (Baseβ€˜π‘†))
15926, 27, 149symgsubg 32682 . . . . . . . 8 ((((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∈ (Baseβ€˜π‘†) ∧ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) ∈ (Baseβ€˜π‘†)) β†’ (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) βˆ’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∘ β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
160158, 117, 159syl2anc 583 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) βˆ’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))) = (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) ∘ β—‘(𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
161 simp-7r 787 . . . . . . 7 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔))
162153, 160, 1613eqtr4rd 2775 . . . . . 6 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ 𝑄 = (((𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦})) + 𝑇) βˆ’ (𝑔 ∘ ((pmTrspβ€˜π·)β€˜{π‘₯, 𝑦}))))
16334, 38, 162rspcedvd 3606 . . . . 5 (((((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) ∧ π‘₯ ∈ (𝐷 βˆ– ran 𝑒)) ∧ 𝑦 ∈ (𝐷 βˆ– ran 𝑒)) ∧ π‘₯ β‰  𝑦) β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
1648difexd 5319 . . . . . . 7 (πœ‘ β†’ (𝐷 βˆ– ran 𝑒) ∈ V)
165164ad5antr 731 . . . . . 6 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (𝐷 βˆ– ran 𝑒) ∈ V)
166 3p2e5 12359 . . . . . . . . . . 11 (3 + 2) = 5
167166, 59eqbrtrid 5173 . . . . . . . . . 10 (πœ‘ β†’ (3 + 2) ≀ 𝑁)
168 2re 12282 . . . . . . . . . . . 12 2 ∈ ℝ
169168a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ 2 ∈ ℝ)
17049, 169, 55leaddsub2d 11812 . . . . . . . . . 10 (πœ‘ β†’ ((3 + 2) ≀ 𝑁 ↔ 2 ≀ (𝑁 βˆ’ 3)))
171167, 170mpbid 231 . . . . . . . . 9 (πœ‘ β†’ 2 ≀ (𝑁 βˆ’ 3))
172171ad5antr 731 . . . . . . . 8 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 2 ≀ (𝑁 βˆ’ 3))
17341a1i 11 . . . . . . . . 9 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑁 = (β™―β€˜π·))
17475elin2d 4191 . . . . . . . . . . 11 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 𝑒 ∈ (β—‘β™― β€œ {3}))
175 hashf 14294 . . . . . . . . . . . . 13 β™―:V⟢(β„•0 βˆͺ {+∞})
176 ffn 6707 . . . . . . . . . . . . 13 (β™―:V⟢(β„•0 βˆͺ {+∞}) β†’ β™― Fn V)
177 fniniseg 7051 . . . . . . . . . . . . 13 (β™― Fn V β†’ (𝑒 ∈ (β—‘β™― β€œ {3}) ↔ (𝑒 ∈ V ∧ (β™―β€˜π‘’) = 3)))
178175, 176, 177mp2b 10 . . . . . . . . . . . 12 (𝑒 ∈ (β—‘β™― β€œ {3}) ↔ (𝑒 ∈ V ∧ (β™―β€˜π‘’) = 3))
179178simprbi 496 . . . . . . . . . . 11 (𝑒 ∈ (β—‘β™― β€œ {3}) β†’ (β™―β€˜π‘’) = 3)
180174, 179syl 17 . . . . . . . . . 10 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (β™―β€˜π‘’) = 3)
181 vex 3470 . . . . . . . . . . . 12 𝑒 ∈ V
182181dmex 7895 . . . . . . . . . . 11 dom 𝑒 ∈ V
183 hashf1rn 14308 . . . . . . . . . . 11 ((dom 𝑒 ∈ V ∧ 𝑒:dom 𝑒–1-1→𝐷) β†’ (β™―β€˜π‘’) = (β™―β€˜ran 𝑒))
184182, 83, 183sylancr 586 . . . . . . . . . 10 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (β™―β€˜π‘’) = (β™―β€˜ran 𝑒))
185180, 184eqtr3d 2766 . . . . . . . . 9 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 3 = (β™―β€˜ran 𝑒))
186173, 185oveq12d 7419 . . . . . . . 8 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (𝑁 βˆ’ 3) = ((β™―β€˜π·) βˆ’ (β™―β€˜ran 𝑒)))
187172, 186breqtrd 5164 . . . . . . 7 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 2 ≀ ((β™―β€˜π·) βˆ’ (β™―β€˜ran 𝑒)))
188 hashssdif 14368 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ran 𝑒 βŠ† 𝐷) β†’ (β™―β€˜(𝐷 βˆ– ran 𝑒)) = ((β™―β€˜π·) βˆ’ (β™―β€˜ran 𝑒)))
1899, 86, 188syl2anc 583 . . . . . . 7 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ (β™―β€˜(𝐷 βˆ– ran 𝑒)) = ((β™―β€˜π·) βˆ’ (β™―β€˜ran 𝑒)))
190187, 189breqtrrd 5166 . . . . . 6 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ 2 ≀ (β™―β€˜(𝐷 βˆ– ran 𝑒)))
191 hashge2el2dif 14437 . . . . . 6 (((𝐷 βˆ– ran 𝑒) ∈ V ∧ 2 ≀ (β™―β€˜(𝐷 βˆ– ran 𝑒))) β†’ βˆƒπ‘₯ ∈ (𝐷 βˆ– ran 𝑒)βˆƒπ‘¦ ∈ (𝐷 βˆ– ran 𝑒)π‘₯ β‰  𝑦)
192165, 190, 191syl2anc 583 . . . . 5 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ βˆƒπ‘₯ ∈ (𝐷 βˆ– ran 𝑒)βˆƒπ‘¦ ∈ (𝐷 βˆ– ran 𝑒)π‘₯ β‰  𝑦)
193163, 192r19.29vva 3205 . . . 4 ((((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) ∧ 𝑒 ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))) ∧ (π‘€β€˜π‘’) = 𝑇) β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
194 nfcv 2895 . . . . . 6 Ⅎ𝑒𝑀
19563, 26, 27tocycf 32710 . . . . . . 7 (𝐷 ∈ Fin β†’ 𝑀:{𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷}⟢(Baseβ€˜π‘†))
196 ffn 6707 . . . . . . 7 (𝑀:{𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷}⟢(Baseβ€˜π‘†) β†’ 𝑀 Fn {𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷})
1978, 195, 1963syl 18 . . . . . 6 (πœ‘ β†’ 𝑀 Fn {𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷})
19866, 62eleqtrdi 2835 . . . . . 6 (πœ‘ β†’ 𝑇 ∈ (𝑀 β€œ (β—‘β™― β€œ {3})))
199194, 197, 198fvelimad 6949 . . . . 5 (πœ‘ β†’ βˆƒπ‘’ ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))(π‘€β€˜π‘’) = 𝑇)
200199ad3antrrr 727 . . . 4 ((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) β†’ βˆƒπ‘’ ∈ ({𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷} ∩ (β—‘β™― β€œ {3}))(π‘€β€˜π‘’) = 𝑇)
201193, 200r19.29a 3154 . . 3 ((((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) ∧ Β¬ 𝑔 ∈ 𝐴) β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
2027, 201pm2.61dan 810 . 2 (((πœ‘ ∧ 𝑔 ∈ (Baseβ€˜π‘†)) ∧ 𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔)) β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
203 cyc3conja.q . . 3 (πœ‘ β†’ 𝑄 ∈ 𝐢)
20462, 26, 41, 63, 27, 112, 149, 61, 8, 203, 66cycpmconjs 32749 . 2 (πœ‘ β†’ βˆƒπ‘” ∈ (Baseβ€˜π‘†)𝑄 = ((𝑔 + 𝑇) βˆ’ 𝑔))
205202, 204r19.29a 3154 1 (πœ‘ β†’ βˆƒπ‘ ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) βˆ’ 𝑝))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062  {crab 3424  Vcvv 3466   βˆ– cdif 3937   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  {csn 4620  {cpr 4622   class class class wbr 5138   I cid 5563  β—‘ccnv 5665  dom cdm 5666  ran crn 5667   β†Ύ cres 5668   β€œ cima 5669   ∘ ccom 5670   Fn wfn 6528  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401  2oc2o 8455   β‰ˆ cen 8931  Fincfn 8934  β„cr 11104  0cc0 11105   + caddc 11108  +∞cpnf 11241   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  2c2 12263  3c3 12264  5c5 12266  β„•0cn0 12468  β„€cz 12554  ...cfz 13480  β™―chash 14286  Word cword 14460  βŸ¨β€œcs2 14788  Basecbs 17142  +gcplusg 17195  Grpcgrp 18852  -gcsg 18854  SymGrpcsymg 19275  pmTrspcpmtr 19350  pmEvencevpm 19399  toCycctocyc 32699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-ot 4629  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-splice 14696  df-reverse 14705  df-csh 14735  df-s2 14795  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-0g 17385  df-gsum 17386  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-mhm 18702  df-submnd 18703  df-efmnd 18783  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19039  df-ghm 19128  df-gim 19173  df-oppg 19251  df-symg 19276  df-pmtr 19351  df-psgn 19400  df-evpm 19401  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-drng 20578  df-cnfld 21228  df-tocyc 32700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator