MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp113 Structured version   Visualization version   GIF version

Theorem simp113 1305
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp113 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp113
StepHypRef Expression
1 simp13 1206 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axcontlem4  28901  llncvrlpln2  39558  4atlem12b  39612  2lnat  39785  cdlemblem  39794  4atexlemex6  40075  cdleme24  40353  cdleme26ee  40361  cdlemg2idN  40597  dihglblem2N  41295  0ellimcdiv  45654  limclner  45656
  Copyright terms: Public domain W3C validator