Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2N Structured version   Visualization version   GIF version

Theorem dihglblem2N 38590
Description: The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2N
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.b . 2 𝐵 = (Base‘𝐾)
2 dihglblem.l . 2 = (le‘𝐾)
3 dihglblem.g . 2 𝐺 = (glb‘𝐾)
4 simpl1l 1221 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
54hllatd 36660 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
6 simp1l 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
7 hlclat 36654 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
9 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
10 ssrab2 4007 . . . . . 6 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ 𝐵
119, 10eqsstri 3949 . . . . 5 𝑇𝐵
121, 3clatglbcl 17716 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
138, 11, 12sylancl 589 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑇) ∈ 𝐵)
1413adantr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) ∈ 𝐵)
15 simpl2 1189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑆𝐵)
16 simpr 488 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
1715, 16sseldd 3916 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝐵)
18 simpl1r 1222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐻)
19 dihglblem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
201, 19lhpbase 37294 . . . . 5 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐵)
22 dihglblem.m . . . . 5 = (meet‘𝐾)
231, 22latmcl 17654 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) ∈ 𝐵)
245, 17, 21, 23syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝐵)
254, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
26 eqidd 2799 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) = (𝑥 𝑊))
27 oveq1 7142 . . . . . . . 8 (𝑣 = 𝑥 → (𝑣 𝑊) = (𝑥 𝑊))
2827rspceeqv 3586 . . . . . . 7 ((𝑥𝑆 ∧ (𝑥 𝑊) = (𝑥 𝑊)) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
2916, 26, 28syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
30 eqeq1 2802 . . . . . . . 8 (𝑢 = (𝑥 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑣 𝑊)))
3130rexbidv 3256 . . . . . . 7 (𝑢 = (𝑥 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3231elrab 3628 . . . . . 6 ((𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑥 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3324, 29, 32sylanbrc 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3433, 9eleqtrrdi 2901 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝑇)
351, 2, 3clatglble 17727 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵 ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3611, 35mp3an2 1446 . . . 4 ((𝐾 ∈ CLat ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3725, 34, 36syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) (𝑥 𝑊))
381, 2, 22latmle1 17678 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) 𝑥)
395, 17, 21, 38syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) 𝑥)
401, 2, 5, 14, 24, 17, 37, 39lattrd 17660 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) 𝑥)
41 eqeq1 2802 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 = (𝑣 𝑊) ↔ 𝑤 = (𝑣 𝑊)))
4241rexbidv 3256 . . . . . . 7 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 𝑤 = (𝑣 𝑊)))
43 oveq1 7142 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑣 𝑊) = (𝑦 𝑊))
4443eqeq2d 2809 . . . . . . . 8 (𝑣 = 𝑦 → (𝑤 = (𝑣 𝑊) ↔ 𝑤 = (𝑦 𝑊)))
4544cbvrexvw 3397 . . . . . . 7 (∃𝑣𝑆 𝑤 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊))
4642, 45syl6bb 290 . . . . . 6 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
4746, 9elrab2 3631 . . . . 5 (𝑤𝑇 ↔ (𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
48 simp3 1135 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝑆)
49 simp13 1202 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ∀𝑥𝑆 𝑧 𝑥)
50 breq2 5034 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑧 𝑥𝑧 𝑦))
5150rspcva 3569 . . . . . . . . . . 11 ((𝑦𝑆 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 𝑦)
5248, 49, 51syl2anc 587 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑦)
53 simp11l 1281 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ HL)
54533ad2ant1 1130 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ HL)
5554hllatd 36660 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ Lat)
56 simp12 1201 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧𝐵)
5754, 7syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ CLat)
58 simp112 1300 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑆𝐵)
591, 3clatglbcl 17716 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
6057, 58, 59syl2anc 587 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
61 simp11r 1282 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑊𝐻)
62613ad2ant1 1130 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐻)
6362, 20syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐵)
641, 2, 3clatleglb 17728 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑆𝐵) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6557, 56, 58, 64syl3anc 1368 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6649, 65mpbird 260 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝐺𝑆))
67 simp113 1301 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) 𝑊)
681, 2, 55, 56, 60, 63, 66, 67lattrd 17660 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑊)
6958, 48sseldd 3916 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝐵)
701, 2, 22latlem12 17680 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑧𝐵𝑦𝐵𝑊𝐵)) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7155, 56, 69, 63, 70syl13anc 1369 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7252, 68, 71mpbi2and 711 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝑦 𝑊))
73723expia 1118 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆𝑧 (𝑦 𝑊)))
74 breq2 5034 . . . . . . . . 9 (𝑤 = (𝑦 𝑊) → (𝑧 𝑤𝑧 (𝑦 𝑊)))
7574biimprcd 253 . . . . . . . 8 (𝑧 (𝑦 𝑊) → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7673, 75syl6 35 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆 → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤)))
7776rexlimdv 3242 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (∃𝑦𝑆 𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7877expimpd 457 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ((𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)) → 𝑧 𝑤))
7947, 78syl5bi 245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑤𝑇𝑧 𝑤))
8079ralrimiv 3148 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ∀𝑤𝑇 𝑧 𝑤)
8153, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ CLat)
82 simp2 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧𝐵)
831, 2, 3clatleglb 17728 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑇𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8411, 83mp3an3 1447 . . . 4 ((𝐾 ∈ CLat ∧ 𝑧𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8581, 82, 84syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8680, 85mpbird 260 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 (𝐺𝑇))
87 simp2 1134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
881, 2, 3, 40, 86, 8, 87, 13isglbd 17719 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  glbcglb 17545  meetcmee 17547  Latclat 17647  CLatccla 17709  HLchlt 36646  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-clat 17710  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-lhyp 37284
This theorem is referenced by:  dihglblem3N  38591  dihglblem3aN  38592
  Copyright terms: Public domain W3C validator