Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2N Structured version   Visualization version   GIF version

Theorem dihglblem2N 38312
Description: The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2N
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.b . 2 𝐵 = (Base‘𝐾)
2 dihglblem.l . 2 = (le‘𝐾)
3 dihglblem.g . 2 𝐺 = (glb‘𝐾)
4 simpl1l 1216 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
54hllatd 36382 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
6 simp1l 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
7 hlclat 36376 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
9 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
10 ssrab2 4055 . . . . . 6 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ 𝐵
119, 10eqsstri 4000 . . . . 5 𝑇𝐵
121, 3clatglbcl 17714 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
138, 11, 12sylancl 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑇) ∈ 𝐵)
1413adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) ∈ 𝐵)
15 simpl2 1184 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑆𝐵)
16 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
1715, 16sseldd 3967 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝐵)
18 simpl1r 1217 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐻)
19 dihglblem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
201, 19lhpbase 37016 . . . . 5 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐵)
22 dihglblem.m . . . . 5 = (meet‘𝐾)
231, 22latmcl 17652 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) ∈ 𝐵)
245, 17, 21, 23syl3anc 1363 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝐵)
254, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
26 eqidd 2822 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) = (𝑥 𝑊))
27 oveq1 7152 . . . . . . . 8 (𝑣 = 𝑥 → (𝑣 𝑊) = (𝑥 𝑊))
2827rspceeqv 3637 . . . . . . 7 ((𝑥𝑆 ∧ (𝑥 𝑊) = (𝑥 𝑊)) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
2916, 26, 28syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
30 eqeq1 2825 . . . . . . . 8 (𝑢 = (𝑥 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑣 𝑊)))
3130rexbidv 3297 . . . . . . 7 (𝑢 = (𝑥 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3231elrab 3679 . . . . . 6 ((𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑥 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3324, 29, 32sylanbrc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3433, 9eleqtrrdi 2924 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝑇)
351, 2, 3clatglble 17725 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵 ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3611, 35mp3an2 1440 . . . 4 ((𝐾 ∈ CLat ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3725, 34, 36syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) (𝑥 𝑊))
381, 2, 22latmle1 17676 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) 𝑥)
395, 17, 21, 38syl3anc 1363 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) 𝑥)
401, 2, 5, 14, 24, 17, 37, 39lattrd 17658 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) 𝑥)
41 eqeq1 2825 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 = (𝑣 𝑊) ↔ 𝑤 = (𝑣 𝑊)))
4241rexbidv 3297 . . . . . . 7 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 𝑤 = (𝑣 𝑊)))
43 oveq1 7152 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑣 𝑊) = (𝑦 𝑊))
4443eqeq2d 2832 . . . . . . . 8 (𝑣 = 𝑦 → (𝑤 = (𝑣 𝑊) ↔ 𝑤 = (𝑦 𝑊)))
4544cbvrexvw 3451 . . . . . . 7 (∃𝑣𝑆 𝑤 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊))
4642, 45syl6bb 288 . . . . . 6 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
4746, 9elrab2 3682 . . . . 5 (𝑤𝑇 ↔ (𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
48 simp3 1130 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝑆)
49 simp13 1197 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ∀𝑥𝑆 𝑧 𝑥)
50 breq2 5062 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑧 𝑥𝑧 𝑦))
5150rspcva 3620 . . . . . . . . . . 11 ((𝑦𝑆 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 𝑦)
5248, 49, 51syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑦)
53 simp11l 1276 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ HL)
54533ad2ant1 1125 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ HL)
5554hllatd 36382 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ Lat)
56 simp12 1196 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧𝐵)
5754, 7syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ CLat)
58 simp112 1295 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑆𝐵)
591, 3clatglbcl 17714 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
6057, 58, 59syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
61 simp11r 1277 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑊𝐻)
62613ad2ant1 1125 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐻)
6362, 20syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐵)
641, 2, 3clatleglb 17726 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑆𝐵) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6557, 56, 58, 64syl3anc 1363 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6649, 65mpbird 258 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝐺𝑆))
67 simp113 1296 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) 𝑊)
681, 2, 55, 56, 60, 63, 66, 67lattrd 17658 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑊)
6958, 48sseldd 3967 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝐵)
701, 2, 22latlem12 17678 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑧𝐵𝑦𝐵𝑊𝐵)) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7155, 56, 69, 63, 70syl13anc 1364 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7252, 68, 71mpbi2and 708 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝑦 𝑊))
73723expia 1113 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆𝑧 (𝑦 𝑊)))
74 breq2 5062 . . . . . . . . 9 (𝑤 = (𝑦 𝑊) → (𝑧 𝑤𝑧 (𝑦 𝑊)))
7574biimprcd 251 . . . . . . . 8 (𝑧 (𝑦 𝑊) → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7673, 75syl6 35 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆 → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤)))
7776rexlimdv 3283 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (∃𝑦𝑆 𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7877expimpd 454 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ((𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)) → 𝑧 𝑤))
7947, 78syl5bi 243 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑤𝑇𝑧 𝑤))
8079ralrimiv 3181 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ∀𝑤𝑇 𝑧 𝑤)
8153, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ CLat)
82 simp2 1129 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧𝐵)
831, 2, 3clatleglb 17726 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑇𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8411, 83mp3an3 1441 . . . 4 ((𝐾 ∈ CLat ∧ 𝑧𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8581, 82, 84syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8680, 85mpbird 258 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 (𝐺𝑇))
87 simp2 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
881, 2, 3, 40, 86, 8, 87, 13isglbd 17717 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3138  wrex 3139  {crab 3142  wss 3935   class class class wbr 5058  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  glbcglb 17543  meetcmee 17545  Latclat 17645  CLatccla 17707  HLchlt 36368  LHypclh 37002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-poset 17546  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-lat 17646  df-clat 17708  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-lhyp 37006
This theorem is referenced by:  dihglblem3N  38313  dihglblem3aN  38314
  Copyright terms: Public domain W3C validator