Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2N Structured version   Visualization version   GIF version

Theorem dihglblem2N 41288
Description: The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2N
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.b . 2 𝐵 = (Base‘𝐾)
2 dihglblem.l . 2 = (le‘𝐾)
3 dihglblem.g . 2 𝐺 = (glb‘𝐾)
4 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
54hllatd 39357 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
6 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
7 hlclat 39351 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
9 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
10 ssrab2 4043 . . . . . 6 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ 𝐵
119, 10eqsstri 3993 . . . . 5 𝑇𝐵
121, 3clatglbcl 18464 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
138, 11, 12sylancl 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑇) ∈ 𝐵)
1413adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) ∈ 𝐵)
15 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑆𝐵)
16 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
1715, 16sseldd 3947 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝐵)
18 simpl1r 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐻)
19 dihglblem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
201, 19lhpbase 39992 . . . . 5 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐵)
22 dihglblem.m . . . . 5 = (meet‘𝐾)
231, 22latmcl 18399 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) ∈ 𝐵)
245, 17, 21, 23syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝐵)
254, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
26 eqidd 2730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) = (𝑥 𝑊))
27 oveq1 7394 . . . . . . . 8 (𝑣 = 𝑥 → (𝑣 𝑊) = (𝑥 𝑊))
2827rspceeqv 3611 . . . . . . 7 ((𝑥𝑆 ∧ (𝑥 𝑊) = (𝑥 𝑊)) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
2916, 26, 28syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
30 eqeq1 2733 . . . . . . . 8 (𝑢 = (𝑥 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑣 𝑊)))
3130rexbidv 3157 . . . . . . 7 (𝑢 = (𝑥 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3231elrab 3659 . . . . . 6 ((𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑥 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3324, 29, 32sylanbrc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3433, 9eleqtrrdi 2839 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝑇)
351, 2, 3clatglble 18476 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵 ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3611, 35mp3an2 1451 . . . 4 ((𝐾 ∈ CLat ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3725, 34, 36syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) (𝑥 𝑊))
381, 2, 22latmle1 18423 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) 𝑥)
395, 17, 21, 38syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) 𝑥)
401, 2, 5, 14, 24, 17, 37, 39lattrd 18405 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) 𝑥)
41 eqeq1 2733 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 = (𝑣 𝑊) ↔ 𝑤 = (𝑣 𝑊)))
4241rexbidv 3157 . . . . . . 7 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 𝑤 = (𝑣 𝑊)))
43 oveq1 7394 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑣 𝑊) = (𝑦 𝑊))
4443eqeq2d 2740 . . . . . . . 8 (𝑣 = 𝑦 → (𝑤 = (𝑣 𝑊) ↔ 𝑤 = (𝑦 𝑊)))
4544cbvrexvw 3216 . . . . . . 7 (∃𝑣𝑆 𝑤 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊))
4642, 45bitrdi 287 . . . . . 6 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
4746, 9elrab2 3662 . . . . 5 (𝑤𝑇 ↔ (𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
48 simp3 1138 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝑆)
49 simp13 1206 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ∀𝑥𝑆 𝑧 𝑥)
50 breq2 5111 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑧 𝑥𝑧 𝑦))
5150rspcva 3586 . . . . . . . . . . 11 ((𝑦𝑆 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 𝑦)
5248, 49, 51syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑦)
53 simp11l 1285 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ HL)
54533ad2ant1 1133 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ HL)
5554hllatd 39357 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ Lat)
56 simp12 1205 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧𝐵)
5754, 7syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ CLat)
58 simp112 1304 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑆𝐵)
591, 3clatglbcl 18464 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
6057, 58, 59syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
61 simp11r 1286 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑊𝐻)
62613ad2ant1 1133 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐻)
6362, 20syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐵)
641, 2, 3clatleglb 18477 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑆𝐵) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6557, 56, 58, 64syl3anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6649, 65mpbird 257 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝐺𝑆))
67 simp113 1305 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) 𝑊)
681, 2, 55, 56, 60, 63, 66, 67lattrd 18405 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑊)
6958, 48sseldd 3947 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝐵)
701, 2, 22latlem12 18425 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑧𝐵𝑦𝐵𝑊𝐵)) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7155, 56, 69, 63, 70syl13anc 1374 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7252, 68, 71mpbi2and 712 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝑦 𝑊))
73723expia 1121 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆𝑧 (𝑦 𝑊)))
74 breq2 5111 . . . . . . . . 9 (𝑤 = (𝑦 𝑊) → (𝑧 𝑤𝑧 (𝑦 𝑊)))
7574biimprcd 250 . . . . . . . 8 (𝑧 (𝑦 𝑊) → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7673, 75syl6 35 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆 → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤)))
7776rexlimdv 3132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (∃𝑦𝑆 𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7877expimpd 453 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ((𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)) → 𝑧 𝑤))
7947, 78biimtrid 242 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑤𝑇𝑧 𝑤))
8079ralrimiv 3124 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ∀𝑤𝑇 𝑧 𝑤)
8153, 7syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ CLat)
82 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧𝐵)
831, 2, 3clatleglb 18477 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑇𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8411, 83mp3an3 1452 . . . 4 ((𝐾 ∈ CLat ∧ 𝑧𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8581, 82, 84syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8680, 85mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 (𝐺𝑇))
87 simp2 1137 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
881, 2, 3, 40, 86, 8, 87, 13isglbd 18468 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  glbcglb 18271  meetcmee 18273  Latclat 18390  CLatccla 18457  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-poset 18274  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391  df-clat 18458  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  dihglblem3N  41289  dihglblem3aN  41290
  Copyright terms: Public domain W3C validator