Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclner Structured version   Visualization version   GIF version

Theorem limclner 45656
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclner.k 𝐾 = (TopOpen‘ℂfld)
limclner.a (𝜑𝐴 ⊆ ℝ)
limclner.j 𝐽 = (topGen‘ran (,))
limclner.f (𝜑𝐹:𝐴⟶ℂ)
limclner.blp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclner.blp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclner.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclner.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limclner.lner (𝜑𝐿𝑅)
Assertion
Ref Expression
limclner (𝜑 → (𝐹 lim 𝐵) = ∅)

Proof of Theorem limclner
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑧 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25783 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ⊆ ℂ
2 limclner.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
31, 2sselid 3947 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅 ∈ ℂ)
5 limccl 25783 . . . . . . . . . . . . 13 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
6 limclner.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
75, 6sselid 3947 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
87ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝐿 ∈ ℂ)
94, 8subcld 11540 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
10 limclner.lner . . . . . . . . . . . . 13 (𝜑𝐿𝑅)
1110necomd 2981 . . . . . . . . . . . 12 (𝜑𝑅𝐿)
1211ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅𝐿)
134, 8, 12subne0d 11549 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ≠ 0)
149, 13absrpcld 15424 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ+)
15 4re 12277 . . . . . . . . . . 11 4 ∈ ℝ
16 4pos 12300 . . . . . . . . . . 11 0 < 4
1715, 16elrpii 12961 . . . . . . . . . 10 4 ∈ ℝ+
1817a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 4 ∈ ℝ+)
1914, 18rpdivcld 13019 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+)
20 nfv 1914 . . . . . . . . . . 11 𝑦(𝜑𝑥 ∈ ℂ)
21 nfra1 3262 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)
2220, 21nfan 1899 . . . . . . . . . 10 𝑦((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
23 nfv 1914 . . . . . . . . . 10 𝑦(((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
2422, 23nfim 1896 . . . . . . . . 9 𝑦(((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
25 ovex 7423 . . . . . . . . 9 ((abs‘(𝑅𝐿)) / 4) ∈ V
26 eleq1 2817 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (𝑦 ∈ ℝ+ ↔ ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+))
27 oveq2 7398 . . . . . . . . . . . . 13 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (4 · 𝑦) = (4 · ((abs‘(𝑅𝐿)) / 4)))
2827breq2d 5122 . . . . . . . . . . . 12 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
29282rexbidv 3203 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
3026, 29imbi12d 344 . . . . . . . . . 10 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)) ↔ (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))))
3130imbi2d 340 . . . . . . . . 9 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))) ↔ (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))))
32 simpll 766 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → (𝜑𝑥 ∈ ℂ))
33 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
34 rspa 3227 . . . . . . . . . . . 12 ((∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
3534adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
36 limclner.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝐴⟶ℂ)
37 fresin 6732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
39 inss2 4204 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
40 ioosscn 13376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵(,)+∞) ⊆ ℂ
4139, 40sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
4241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
43 limclner.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐽 = (topGen‘ran (,))
44 retop 24656 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) ∈ Top
4543, 44eqeltri 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐽 ∈ Top
46 inss2 4204 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
47 ioossre 13375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (-∞(,)𝐵) ⊆ ℝ
4846, 47sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
49 uniretop 24657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ = (topGen‘ran (,))
5043unieqi 4886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐽 = (topGen‘ran (,))
5149, 50eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ = 𝐽
5251lpss 23036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
5345, 48, 52mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
54 limclner.blp1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
5553, 54sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ)
5655recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ ℂ)
5738, 42, 56ellimc3 25787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))))
582, 57mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)))
5958simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
6059r19.21bi 3230 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
61603ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
62 simp11l 1285 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝜑)
63 simp12 1205 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑧 ∈ ℝ+)
64 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑣 ∈ ℝ+)
65 breq2 5114 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑢 ↔ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
6665rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢 ↔ ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
67 inss1 4203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
69 limclner.k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7069cnfldtop 24678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐾 ∈ Top
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐾 ∈ Top)
72 ax-resscn 11132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℂ
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℂ)
74 ioossre 13375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵(,)+∞) ⊆ ℝ
7539, 74sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ)
77 unicntop 24680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℂ = (TopOpen‘ℂfld)
7869unieqi 4886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7977, 78eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℂ = 𝐾
8069tgioo2 24698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (topGen‘ran (,)) = (𝐾t ℝ)
8143, 80eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐽 = (𝐾t ℝ)
8279, 81restlp 23077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8371, 73, 76, 82syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8469eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (TopOpen‘ℂfld) = 𝐾
8584fveq2i 6864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐾)
8685fveq1i 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
8868, 83, 873sstr4d 4005 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
89 limclner.blp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
9088, 89sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
9142, 56islpcn 45644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) ↔ ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢))
9290, 91mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
93923ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
94 ifcl 4537 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
95943adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
9666, 93, 95rspcdva 3592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
97 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
9875, 97sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ ℝ)
9973sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℂ)
10056adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝐵 ∈ ℂ)
10199, 100subcld 11540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑏 ∈ ℝ) → (𝑏𝐵) ∈ ℂ)
102101abscld 15412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
1031023ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) ∈ ℝ)
10595rpred 13002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
107 rpre 12967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑧 ∈ ℝ)
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
111 rpre 12967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
112 min1 13156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
113107, 111, 112syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
1141133adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
115114ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
116104, 106, 109, 110, 115ltletrd 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
1171113ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑣 ∈ ℝ)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
119109, 118min2d 45476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
120104, 106, 118, 110, 119ltletrd 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑣)
121116, 120jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
122121ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12398, 122sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
124123reximdva 3147 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12596, 124mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
12662, 63, 64, 125syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
127 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
128 nfre1 3263 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
12997elin1d 4170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐴)
1301293ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐴)
131 simp113 1305 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
132 eldifsni 4757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐵)
133132adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐵)
134 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
135133, 134jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
1361353adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
137 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → (𝑤𝐵𝑏𝐵))
138 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → (abs‘(𝑤𝐵)) = (abs‘(𝑏𝐵)))
139138breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑏𝐵)) < 𝑧))
140137, 139anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)))
141140imbrov2fvoveq 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)))
142141rspcva 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦))
143142imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
144130, 131, 136, 143syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
145973ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
146623ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝜑)
147 simp13 1206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
148 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝜑
149 nfra1 3262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
150148, 149nfan 1899 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
151 elinel2 4168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → 𝑤 ∈ (𝐵(,)+∞))
152151fvresd 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑤) = (𝐹𝑤))
153152eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (𝐹𝑤) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑤))
154153fvoveq1d 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
1551543ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
156 rspa 3227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
1571563impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
1581573adant1l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
159155, 158eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)
1601593exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)))
161150, 160ralrimi 3236 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
162146, 147, 161syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
163132anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ (abs‘(𝑏𝐵)) < 𝑣) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
164163adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
1651643adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
166138breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑏𝐵)) < 𝑣))
167137, 166anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
168167imbrov2fvoveq 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
169168rspcva 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
170169imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
171145, 162, 165, 170syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
172 rspe 3228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝐴 ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
173130, 144, 171, 172syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1741733exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → (((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
175127, 128, 174rexlimd 3245 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
176126, 175mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1771763exp 1119 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
178177rexlimdv 3133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
17961, 178mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1801793exp 1119 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
181180rexlimdv 3133 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
182181imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
183182adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
184183ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1853ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑅 ∈ ℂ)
1867ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝐿 ∈ ℂ)
187185, 186subcld 11540 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
188187abscld 15412 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
189 simp-6l 786 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝜑)
190 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑏𝐴)
19136ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑏𝐴) → (𝐹𝑏) ∈ ℂ)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑏) ∈ ℂ)
193185, 192subcld 11540 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅 − (𝐹𝑏)) ∈ ℂ)
194193abscld 15412 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) ∈ ℝ)
195 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑥 ∈ ℂ)
196192, 195subcld 11540 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑏) − 𝑥) ∈ ℂ)
197196abscld 15412 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) ∈ ℝ)
198194, 197readdcld 11210 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) ∈ ℝ)
199 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑎𝐴)
20036ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ℂ)
201189, 199, 200syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
202195, 201subcld 11540 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑥 − (𝐹𝑎)) ∈ ℂ)
203202abscld 15412 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) ∈ ℝ)
204198, 203readdcld 11210 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) ∈ ℝ)
205201, 186subcld 11540 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑎) − 𝐿) ∈ ℂ)
206205abscld 15412 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) ∈ ℝ)
207204, 206readdcld 11210 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) ∈ ℝ)
20815a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 4 ∈ ℝ)
209 rpre 12967 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
210209ad5antlr 735 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑦 ∈ ℝ)
211208, 210remulcld 11211 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (4 · 𝑦) ∈ ℝ)
212185, 192, 195, 201, 186absnpncan3d 45312 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ≤ ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))))
213185, 192abssubd 15429 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) = (abs‘((𝐹𝑏) − 𝑅)))
214 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
215213, 214eqbrtrd 5132 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) < 𝑦)
216 simprl 770 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
217 simp-5r 785 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → 𝑥 ∈ ℂ)
218200ad5ant14 757 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
219218adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (𝐹𝑎) ∈ ℂ)
220217, 219abssubd 15429 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) = (abs‘((𝐹𝑎) − 𝑥)))
221 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
222220, 221eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
223222adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
224 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
225224adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
226194, 197, 203, 206, 210, 215, 216, 223, 225lt4addmuld 45311 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) < (4 · 𝑦))
227188, 207, 211, 212, 226lelttrd 11339 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) < (4 · 𝑦))
228227ex 412 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
229228adantl3r 750 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
230229reximdva 3147 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
231184, 230mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
232 fresin 6732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
23336, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
234 ioosscn 13376 . . . . . . . . . . . . . . . . . . . . . . . 24 (-∞(,)𝐵) ⊆ ℂ
23546, 234sstri 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ
236235a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
237233, 236, 56ellimc3 25787 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))))
2386, 237mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)))
239238simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
240239r19.21bi 3230 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
2412403ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
242 simp11l 1285 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝜑)
243 simp12 1205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑧 ∈ ℝ+)
244 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑣 ∈ ℝ+)
245 breq2 5114 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑢 ↔ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
246245rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢 ↔ ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
247 inss1 4203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
248247a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
24948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ)
25079, 81restlp 23077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25171, 73, 249, 250syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25285fveq1i 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
253252a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
254248, 251, 2533sstr4d 4005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
255254, 54sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
256236, 56islpcn 45644 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) ↔ ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢))
257255, 256mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
2582573ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
259246, 258, 95rspcdva 3592 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
260 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
26148, 260sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ ℝ)
26273sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
26356adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ ℂ)
264262, 263subcld 11540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑎 ∈ ℝ) → (𝑎𝐵) ∈ ℂ)
265264abscld 15412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
2662653ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
267266adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) ∈ ℝ)
268105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
269108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
270 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
271114ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
272267, 268, 269, 270, 271ltletrd 11341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
273117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
274 min2 13157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
275107, 111, 274syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
2762753adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
277276ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
278267, 268, 273, 270, 277ltletrd 11341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑣)
279272, 278jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
280279ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
281261, 280sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
282281reximdva 3147 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
283259, 282mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
284242, 243, 244, 283syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
285 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑎(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
286 nfre1 3263 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
287260elin1d 4170 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐴)
2882873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐴)
289 simp113 1305 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
290 eldifsni 4757 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐵)
291290adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐵)
292 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
293291, 292jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
2942933adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
295 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (𝑤𝐵𝑎𝐵))
296 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → (abs‘(𝑤𝐵)) = (abs‘(𝑎𝐵)))
297296breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑎𝐵)) < 𝑧))
298295, 297anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)))
299298imbrov2fvoveq 7415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)))
300299rspcva 3589 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦))
301300imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
302288, 289, 294, 301syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
3032603ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
3042423ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝜑)
305 simp13 1206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
306 nfra1 3262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑤𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
307148, 306nfan 1899 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
308 elinel2 4168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → 𝑤 ∈ (-∞(,)𝐵))
309308fvresd 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑤) = (𝐹𝑤))
310309eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (𝐹𝑤) = ((𝐹 ↾ (-∞(,)𝐵))‘𝑤))
311310fvoveq1d 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
3123113ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
313 rspa 3227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
3143133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
3153143adant1l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
316312, 315eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)
3173163exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)))
318307, 317ralrimi 3236 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
319304, 305, 318syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
320290anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ (abs‘(𝑎𝐵)) < 𝑣) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
321320adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
3223213adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
323296breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑎𝐵)) < 𝑣))
324295, 323anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
325324imbrov2fvoveq 7415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
326325rspcva 3589 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
327326imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
328303, 319, 322, 327syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
329 rspe 3228 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
330288, 302, 328, 329syl12anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3313303exp 1119 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → (((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
332285, 286, 331rexlimd 3245 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
333284, 332mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3343333exp 1119 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
335334rexlimdv 3133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
336241, 335mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3373363exp 1119 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
338337rexlimdv 3133 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
339338imp 406 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
340339adantllr 719 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
341231, 340reximddv3 3151 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
34232, 33, 35, 341syl21anc 837 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
343342ex 412 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
34424, 25, 31, 343vtoclf 3533 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
34519, 344mpd 15 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
346 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
347 abssubrp 45281 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝑅𝐿) → (abs‘(𝑅𝐿)) ∈ ℝ+)
3483, 7, 11, 347syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℝ+)
349348rpcnd 13004 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℂ)
350349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) ∈ ℂ)
351 4cn 12278 . . . . . . . . . . . . . 14 4 ∈ ℂ
352351a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ∈ ℂ)
353 4ne0 12301 . . . . . . . . . . . . . 14 4 ≠ 0
354353a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ≠ 0)
355350, 352, 354divcan2d 11967 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (4 · ((abs‘(𝑅𝐿)) / 4)) = (abs‘(𝑅𝐿)))
356346, 355breqtrd 5136 . . . . . . . . . . 11 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
357356ex 412 . . . . . . . . . 10 (𝜑 → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
358357a1d 25 . . . . . . . . 9 (𝜑 → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
359358ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
360359rexlimdvv 3194 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
361345, 360mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
3629abscld 15412 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
363362ltnrd 11315 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ¬ (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
364361, 363pm2.65da 816 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
365364ex 412 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
366 imnan 399 . . . 4 ((𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ↔ ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
367365, 366sylib 218 . . 3 (𝜑 → ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
368 limclner.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
369368, 73sstrd 3960 . . . 4 (𝜑𝐴 ⊆ ℂ)
37036, 369, 56ellimc3 25787 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))))
371367, 370mtbird 325 . 2 (𝜑 → ¬ 𝑥 ∈ (𝐹 lim 𝐵))
372371eq0rdv 4373 1 (𝜑 → (𝐹 lim 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   cuni 4874   class class class wbr 5110  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  4c4 12250  +crp 12958  (,)cioo 13313  abscabs 15207  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  limPtclp 23028   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  limclr  45660  jumpncnp  45903
  Copyright terms: Public domain W3C validator