Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclner Structured version   Visualization version   GIF version

Theorem limclner 45773
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclner.k 𝐾 = (TopOpen‘ℂfld)
limclner.a (𝜑𝐴 ⊆ ℝ)
limclner.j 𝐽 = (topGen‘ran (,))
limclner.f (𝜑𝐹:𝐴⟶ℂ)
limclner.blp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclner.blp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclner.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclner.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limclner.lner (𝜑𝐿𝑅)
Assertion
Ref Expression
limclner (𝜑 → (𝐹 lim 𝐵) = ∅)

Proof of Theorem limclner
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑧 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25804 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ⊆ ℂ
2 limclner.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
31, 2sselid 3928 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅 ∈ ℂ)
5 limccl 25804 . . . . . . . . . . . . 13 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
6 limclner.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
75, 6sselid 3928 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
87ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝐿 ∈ ℂ)
94, 8subcld 11479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
10 limclner.lner . . . . . . . . . . . . 13 (𝜑𝐿𝑅)
1110necomd 2984 . . . . . . . . . . . 12 (𝜑𝑅𝐿)
1211ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅𝐿)
134, 8, 12subne0d 11488 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ≠ 0)
149, 13absrpcld 15360 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ+)
15 4re 12216 . . . . . . . . . . 11 4 ∈ ℝ
16 4pos 12239 . . . . . . . . . . 11 0 < 4
1715, 16elrpii 12895 . . . . . . . . . 10 4 ∈ ℝ+
1817a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 4 ∈ ℝ+)
1914, 18rpdivcld 12953 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+)
20 nfv 1915 . . . . . . . . . . 11 𝑦(𝜑𝑥 ∈ ℂ)
21 nfra1 3257 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)
2220, 21nfan 1900 . . . . . . . . . 10 𝑦((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
23 nfv 1915 . . . . . . . . . 10 𝑦(((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
2422, 23nfim 1897 . . . . . . . . 9 𝑦(((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
25 ovex 7385 . . . . . . . . 9 ((abs‘(𝑅𝐿)) / 4) ∈ V
26 eleq1 2821 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (𝑦 ∈ ℝ+ ↔ ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+))
27 oveq2 7360 . . . . . . . . . . . . 13 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (4 · 𝑦) = (4 · ((abs‘(𝑅𝐿)) / 4)))
2827breq2d 5105 . . . . . . . . . . . 12 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
29282rexbidv 3198 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
3026, 29imbi12d 344 . . . . . . . . . 10 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)) ↔ (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))))
3130imbi2d 340 . . . . . . . . 9 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))) ↔ (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))))
32 simpll 766 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → (𝜑𝑥 ∈ ℂ))
33 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
34 rspa 3222 . . . . . . . . . . . 12 ((∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
3534adantll 714 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
36 limclner.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝐴⟶ℂ)
37 fresin 6697 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
39 inss2 4187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
40 ioosscn 13310 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵(,)+∞) ⊆ ℂ
4139, 40sstri 3940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
4241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
43 limclner.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐽 = (topGen‘ran (,))
44 retop 24677 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) ∈ Top
4543, 44eqeltri 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐽 ∈ Top
46 inss2 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
47 ioossre 13309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (-∞(,)𝐵) ⊆ ℝ
4846, 47sstri 3940 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
49 uniretop 24678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ = (topGen‘ran (,))
5043unieqi 4870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐽 = (topGen‘ran (,))
5149, 50eqtr4i 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ = 𝐽
5251lpss 23058 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
5345, 48, 52mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
54 limclner.blp1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
5553, 54sselid 3928 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ)
5655recnd 11147 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ ℂ)
5738, 42, 56ellimc3 25808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))))
582, 57mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)))
5958simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
6059r19.21bi 3225 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
61603ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
62 simp11l 1285 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝜑)
63 simp12 1205 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑧 ∈ ℝ+)
64 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑣 ∈ ℝ+)
65 breq2 5097 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑢 ↔ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
6665rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢 ↔ ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
67 inss1 4186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
69 limclner.k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7069cnfldtop 24699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐾 ∈ Top
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐾 ∈ Top)
72 ax-resscn 11070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℂ
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℂ)
74 ioossre 13309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵(,)+∞) ⊆ ℝ
7539, 74sstri 3940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ)
77 unicntop 24701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℂ = (TopOpen‘ℂfld)
7869unieqi 4870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7977, 78eqtr4i 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℂ = 𝐾
8069tgioo2 24719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (topGen‘ran (,)) = (𝐾t ℝ)
8143, 80eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐽 = (𝐾t ℝ)
8279, 81restlp 23099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8371, 73, 76, 82syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8469eqcomi 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (TopOpen‘ℂfld) = 𝐾
8584fveq2i 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐾)
8685fveq1i 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
8868, 83, 873sstr4d 3986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
89 limclner.blp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
9088, 89sseldd 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
9142, 56islpcn 45761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) ↔ ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢))
9290, 91mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
93923ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
94 ifcl 4520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
95943adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
9666, 93, 95rspcdva 3574 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
97 eldifi 4080 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
9875, 97sselid 3928 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ ℝ)
9973sselda 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℂ)
10056adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝐵 ∈ ℂ)
10199, 100subcld 11479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑏 ∈ ℝ) → (𝑏𝐵) ∈ ℂ)
102101abscld 15348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
1031023ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) ∈ ℝ)
10595rpred 12936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
107 rpre 12901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑧 ∈ ℝ)
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
110 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
111 rpre 12901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
112 min1 13090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
113107, 111, 112syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
1141133adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
115114ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
116104, 106, 109, 110, 115ltletrd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
1171113ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑣 ∈ ℝ)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
119109, 118min2d 45595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
120104, 106, 118, 110, 119ltletrd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑣)
121116, 120jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
122121ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12398, 122sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
124123reximdva 3146 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12596, 124mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
12662, 63, 64, 125syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
127 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
128 nfre1 3258 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
12997elin1d 4153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐴)
1301293ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐴)
131 simp113 1305 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
132 eldifsni 4741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐵)
133132adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐵)
134 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
135133, 134jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
1361353adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
137 neeq1 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → (𝑤𝐵𝑏𝐵))
138 fvoveq1 7375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → (abs‘(𝑤𝐵)) = (abs‘(𝑏𝐵)))
139138breq1d 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑏𝐵)) < 𝑧))
140137, 139anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)))
141140imbrov2fvoveq 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)))
142141rspcva 3571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦))
143142imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
144130, 131, 136, 143syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
145973ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
146623ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝜑)
147 simp13 1206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
148 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝜑
149 nfra1 3257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
150148, 149nfan 1900 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
151 elinel2 4151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → 𝑤 ∈ (𝐵(,)+∞))
152151fvresd 6848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑤) = (𝐹𝑤))
153152eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (𝐹𝑤) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑤))
154153fvoveq1d 7374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
1551543ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
156 rspa 3222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
1571563impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
1581573adant1l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
159155, 158eqbrtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)
1601593exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)))
161150, 160ralrimi 3231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
162146, 147, 161syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
163132anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ (abs‘(𝑏𝐵)) < 𝑣) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
164163adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
1651643adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
166138breq1d 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑏𝐵)) < 𝑣))
167137, 166anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
168167imbrov2fvoveq 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
169168rspcva 3571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
170169imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
171145, 162, 165, 170syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
172 rspe 3223 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝐴 ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
173130, 144, 171, 172syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1741733exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → (((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
175127, 128, 174rexlimd 3240 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
176126, 175mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1771763exp 1119 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
178177rexlimdv 3132 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
17961, 178mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1801793exp 1119 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
181180rexlimdv 3132 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
182181imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
183182adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
184183ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1853ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑅 ∈ ℂ)
1867ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝐿 ∈ ℂ)
187185, 186subcld 11479 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
188187abscld 15348 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
189 simp-6l 786 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝜑)
190 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑏𝐴)
19136ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑏𝐴) → (𝐹𝑏) ∈ ℂ)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑏) ∈ ℂ)
193185, 192subcld 11479 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅 − (𝐹𝑏)) ∈ ℂ)
194193abscld 15348 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) ∈ ℝ)
195 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑥 ∈ ℂ)
196192, 195subcld 11479 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑏) − 𝑥) ∈ ℂ)
197196abscld 15348 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) ∈ ℝ)
198194, 197readdcld 11148 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) ∈ ℝ)
199 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑎𝐴)
20036ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ℂ)
201189, 199, 200syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
202195, 201subcld 11479 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑥 − (𝐹𝑎)) ∈ ℂ)
203202abscld 15348 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) ∈ ℝ)
204198, 203readdcld 11148 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) ∈ ℝ)
205201, 186subcld 11479 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑎) − 𝐿) ∈ ℂ)
206205abscld 15348 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) ∈ ℝ)
207204, 206readdcld 11148 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) ∈ ℝ)
20815a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 4 ∈ ℝ)
209 rpre 12901 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
210209ad5antlr 735 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑦 ∈ ℝ)
211208, 210remulcld 11149 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (4 · 𝑦) ∈ ℝ)
212185, 192, 195, 201, 186absnpncan3d 45432 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ≤ ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))))
213185, 192abssubd 15365 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) = (abs‘((𝐹𝑏) − 𝑅)))
214 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
215213, 214eqbrtrd 5115 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) < 𝑦)
216 simprl 770 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
217 simp-5r 785 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → 𝑥 ∈ ℂ)
218200ad5ant14 757 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
219218adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (𝐹𝑎) ∈ ℂ)
220217, 219abssubd 15365 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) = (abs‘((𝐹𝑎) − 𝑥)))
221 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
222220, 221eqbrtrd 5115 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
223222adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
224 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
225224adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
226194, 197, 203, 206, 210, 215, 216, 223, 225lt4addmuld 45431 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) < (4 · 𝑦))
227188, 207, 211, 212, 226lelttrd 11278 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) < (4 · 𝑦))
228227ex 412 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
229228adantl3r 750 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
230229reximdva 3146 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
231184, 230mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
232 fresin 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
23336, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
234 ioosscn 13310 . . . . . . . . . . . . . . . . . . . . . . . 24 (-∞(,)𝐵) ⊆ ℂ
23546, 234sstri 3940 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ
236235a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
237233, 236, 56ellimc3 25808 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))))
2386, 237mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)))
239238simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
240239r19.21bi 3225 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
2412403ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
242 simp11l 1285 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝜑)
243 simp12 1205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑧 ∈ ℝ+)
244 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑣 ∈ ℝ+)
245 breq2 5097 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑢 ↔ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
246245rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢 ↔ ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
247 inss1 4186 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
248247a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
24948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ)
25079, 81restlp 23099 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25171, 73, 249, 250syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25285fveq1i 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
253252a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
254248, 251, 2533sstr4d 3986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
255254, 54sseldd 3931 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
256236, 56islpcn 45761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) ↔ ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢))
257255, 256mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
2582573ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
259246, 258, 95rspcdva 3574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
260 eldifi 4080 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
26148, 260sselid 3928 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ ℝ)
26273sselda 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
26356adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ ℂ)
264262, 263subcld 11479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑎 ∈ ℝ) → (𝑎𝐵) ∈ ℂ)
265264abscld 15348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
2662653ad2antl1 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
267266adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) ∈ ℝ)
268105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
269108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
270 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
271114ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
272267, 268, 269, 270, 271ltletrd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
273117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
274 min2 13091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
275107, 111, 274syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
2762753adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
277276ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
278267, 268, 273, 270, 277ltletrd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑣)
279272, 278jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
280279ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
281261, 280sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
282281reximdva 3146 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
283259, 282mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
284242, 243, 244, 283syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
285 nfv 1915 . . . . . . . . . . . . . . . . . . . . 21 𝑎(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
286 nfre1 3258 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
287260elin1d 4153 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐴)
2882873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐴)
289 simp113 1305 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
290 eldifsni 4741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐵)
291290adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐵)
292 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
293291, 292jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
2942933adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
295 neeq1 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (𝑤𝐵𝑎𝐵))
296 fvoveq1 7375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → (abs‘(𝑤𝐵)) = (abs‘(𝑎𝐵)))
297296breq1d 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑎𝐵)) < 𝑧))
298295, 297anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)))
299298imbrov2fvoveq 7377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)))
300299rspcva 3571 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦))
301300imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
302288, 289, 294, 301syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
3032603ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
3042423ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝜑)
305 simp13 1206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
306 nfra1 3257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑤𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
307148, 306nfan 1900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
308 elinel2 4151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → 𝑤 ∈ (-∞(,)𝐵))
309308fvresd 6848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑤) = (𝐹𝑤))
310309eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (𝐹𝑤) = ((𝐹 ↾ (-∞(,)𝐵))‘𝑤))
311310fvoveq1d 7374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
3123113ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
313 rspa 3222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
3143133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
3153143adant1l 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
316312, 315eqbrtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)
3173163exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)))
318307, 317ralrimi 3231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
319304, 305, 318syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
320290anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ (abs‘(𝑎𝐵)) < 𝑣) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
321320adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
3223213adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
323296breq1d 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑎𝐵)) < 𝑣))
324295, 323anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
325324imbrov2fvoveq 7377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
326325rspcva 3571 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
327326imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
328303, 319, 322, 327syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
329 rspe 3223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
330288, 302, 328, 329syl12anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3313303exp 1119 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → (((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
332285, 286, 331rexlimd 3240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
333284, 332mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3343333exp 1119 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
335334rexlimdv 3132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
336241, 335mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3373363exp 1119 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
338337rexlimdv 3132 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
339338imp 406 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
340339adantllr 719 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
341231, 340reximddv3 3150 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
34232, 33, 35, 341syl21anc 837 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
343342ex 412 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
34424, 25, 31, 343vtoclf 3518 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
34519, 344mpd 15 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
346 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
347 abssubrp 45401 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝑅𝐿) → (abs‘(𝑅𝐿)) ∈ ℝ+)
3483, 7, 11, 347syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℝ+)
349348rpcnd 12938 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℂ)
350349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) ∈ ℂ)
351 4cn 12217 . . . . . . . . . . . . . 14 4 ∈ ℂ
352351a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ∈ ℂ)
353 4ne0 12240 . . . . . . . . . . . . . 14 4 ≠ 0
354353a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ≠ 0)
355350, 352, 354divcan2d 11906 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (4 · ((abs‘(𝑅𝐿)) / 4)) = (abs‘(𝑅𝐿)))
356346, 355breqtrd 5119 . . . . . . . . . . 11 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
357356ex 412 . . . . . . . . . 10 (𝜑 → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
358357a1d 25 . . . . . . . . 9 (𝜑 → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
359358ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
360359rexlimdvv 3189 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
361345, 360mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
3629abscld 15348 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
363362ltnrd 11254 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ¬ (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
364361, 363pm2.65da 816 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
365364ex 412 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
366 imnan 399 . . . 4 ((𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ↔ ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
367365, 366sylib 218 . . 3 (𝜑 → ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
368 limclner.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
369368, 73sstrd 3941 . . . 4 (𝜑𝐴 ⊆ ℂ)
37036, 369, 56ellimc3 25808 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))))
371367, 370mtbird 325 . 2 (𝜑 → ¬ 𝑥 ∈ (𝐹 lim 𝐵))
372371eq0rdv 4356 1 (𝜑 → (𝐹 lim 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  cin 3897  wss 3898  c0 4282  ifcif 4474  {csn 4575   cuni 4858   class class class wbr 5093  ran crn 5620  cres 5621  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013   + caddc 11016   · cmul 11018  +∞cpnf 11150  -∞cmnf 11151   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  4c4 12189  +crp 12892  (,)cioo 13247  abscabs 15143  t crest 17326  TopOpenctopn 17327  topGenctg 17343  fldccnfld 21293  Topctop 22809  limPtclp 23050   lim climc 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-cnp 23144  df-xms 24236  df-ms 24237  df-limc 25795
This theorem is referenced by:  limclr  45777  jumpncnp  46020
  Copyright terms: Public domain W3C validator