Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclner Structured version   Visualization version   GIF version

Theorem limclner 43192
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclner.k 𝐾 = (TopOpen‘ℂfld)
limclner.a (𝜑𝐴 ⊆ ℝ)
limclner.j 𝐽 = (topGen‘ran (,))
limclner.f (𝜑𝐹:𝐴⟶ℂ)
limclner.blp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclner.blp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclner.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclner.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limclner.lner (𝜑𝐿𝑅)
Assertion
Ref Expression
limclner (𝜑 → (𝐹 lim 𝐵) = ∅)

Proof of Theorem limclner
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑧 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25039 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ⊆ ℂ
2 limclner.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
31, 2sselid 3919 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℂ)
43ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅 ∈ ℂ)
5 limccl 25039 . . . . . . . . . . . . 13 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
6 limclner.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
75, 6sselid 3919 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
87ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝐿 ∈ ℂ)
94, 8subcld 11332 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
10 limclner.lner . . . . . . . . . . . . 13 (𝜑𝐿𝑅)
1110necomd 2999 . . . . . . . . . . . 12 (𝜑𝑅𝐿)
1211ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅𝐿)
134, 8, 12subne0d 11341 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ≠ 0)
149, 13absrpcld 15160 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ+)
15 4re 12057 . . . . . . . . . . 11 4 ∈ ℝ
16 4pos 12080 . . . . . . . . . . 11 0 < 4
1715, 16elrpii 12733 . . . . . . . . . 10 4 ∈ ℝ+
1817a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 4 ∈ ℝ+)
1914, 18rpdivcld 12789 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+)
20 nfv 1917 . . . . . . . . . . 11 𝑦(𝜑𝑥 ∈ ℂ)
21 nfra1 3144 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)
2220, 21nfan 1902 . . . . . . . . . 10 𝑦((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
23 nfv 1917 . . . . . . . . . 10 𝑦(((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
2422, 23nfim 1899 . . . . . . . . 9 𝑦(((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
25 ovex 7308 . . . . . . . . 9 ((abs‘(𝑅𝐿)) / 4) ∈ V
26 eleq1 2826 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (𝑦 ∈ ℝ+ ↔ ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+))
27 oveq2 7283 . . . . . . . . . . . . 13 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (4 · 𝑦) = (4 · ((abs‘(𝑅𝐿)) / 4)))
2827breq2d 5086 . . . . . . . . . . . 12 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
29282rexbidv 3229 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
3026, 29imbi12d 345 . . . . . . . . . 10 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)) ↔ (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))))
3130imbi2d 341 . . . . . . . . 9 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))) ↔ (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))))
32 simpll 764 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → (𝜑𝑥 ∈ ℂ))
33 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
34 rspa 3132 . . . . . . . . . . . 12 ((∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
3534adantll 711 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
36 limclner.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝐴⟶ℂ)
37 fresin 6643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
39 inss2 4163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
40 ioosscn 13141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵(,)+∞) ⊆ ℂ
4139, 40sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
4241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
43 limclner.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐽 = (topGen‘ran (,))
44 retop 23925 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) ∈ Top
4543, 44eqeltri 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐽 ∈ Top
46 inss2 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
47 ioossre 13140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (-∞(,)𝐵) ⊆ ℝ
4846, 47sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
49 uniretop 23926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ = (topGen‘ran (,))
5043unieqi 4852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐽 = (topGen‘ran (,))
5149, 50eqtr4i 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ = 𝐽
5251lpss 22293 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
5345, 48, 52mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
54 limclner.blp1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
5553, 54sselid 3919 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ)
5655recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ ℂ)
5738, 42, 56ellimc3 25043 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))))
582, 57mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)))
5958simprd 496 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
6059r19.21bi 3134 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
61603ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
62 simp11l 1283 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝜑)
63 simp12 1203 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑧 ∈ ℝ+)
64 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑣 ∈ ℝ+)
65 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑢 ↔ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
6665rexbidv 3226 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢 ↔ ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
67 inss1 4162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
69 limclner.k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7069cnfldtop 23947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐾 ∈ Top
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐾 ∈ Top)
72 ax-resscn 10928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℂ
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℂ)
74 ioossre 13140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵(,)+∞) ⊆ ℝ
7539, 74sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ)
77 unicntop 23949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℂ = (TopOpen‘ℂfld)
7869unieqi 4852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐾 = (TopOpen‘ℂfld)
7977, 78eqtr4i 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℂ = 𝐾
8069tgioo2 23966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (topGen‘ran (,)) = (𝐾t ℝ)
8143, 80eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝐽 = (𝐾t ℝ)
8279, 81restlp 22334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8371, 73, 76, 82syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
8469eqcomi 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (TopOpen‘ℂfld) = 𝐾
8584fveq2i 6777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐾)
8685fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
8868, 83, 873sstr4d 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
89 limclner.blp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
9088, 89sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
9142, 56islpcn 43180 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) ↔ ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢))
9290, 91mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
93923ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
94 ifcl 4504 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
95943adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
9666, 93, 95rspcdva 3562 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
97 eldifi 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
9875, 97sselid 3919 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ ℝ)
9973sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℂ)
10056adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → 𝐵 ∈ ℂ)
10199, 100subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑏 ∈ ℝ) → (𝑏𝐵) ∈ ℂ)
102101abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
1031023ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
104103adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) ∈ ℝ)
10595rpred 12772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
106105ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
107 rpre 12738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
1081073ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑧 ∈ ℝ)
109108ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
110 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
111 rpre 12738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
112 min1 12923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
113107, 111, 112syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
1141133adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
115114ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
116104, 106, 109, 110, 115ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
1171113ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑣 ∈ ℝ)
118117ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
119109, 118min2d 43013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
120104, 106, 118, 110, 119ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑣)
121116, 120jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
122121ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12398, 122sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
124123reximdva 3203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
12596, 124mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
12662, 63, 64, 125syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
127 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
128 nfre1 3239 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
12997elin1d 4132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐴)
1301293ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐴)
131 simp113 1303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
132 eldifsni 4723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐵)
133132adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐵)
134 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
135133, 134jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
1361353adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
137 neeq1 3006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → (𝑤𝐵𝑏𝐵))
138 fvoveq1 7298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → (abs‘(𝑤𝐵)) = (abs‘(𝑏𝐵)))
139138breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑏𝐵)) < 𝑧))
140137, 139anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)))
141140imbrov2fvoveq 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)))
142141rspcva 3559 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦))
143142imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
144130, 131, 136, 143syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
145973ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
146623ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝜑)
147 simp13 1204 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
148 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝜑
149 nfra1 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑤𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
150148, 149nfan 1902 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
151 elinel2 4130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → 𝑤 ∈ (𝐵(,)+∞))
152151fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑤) = (𝐹𝑤))
153152eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (𝐹𝑤) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑤))
154153fvoveq1d 7297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
1551543ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
156 rspa 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
1571563impia 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
1581573adant1l 1175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
159155, 158eqbrtrd 5096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)
1601593exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)))
161150, 160ralrimi 3141 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
162146, 147, 161syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
163132anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ (abs‘(𝑏𝐵)) < 𝑣) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
164163adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
1651643adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
166138breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑏𝐵)) < 𝑣))
167137, 166anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
168167imbrov2fvoveq 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
169168rspcva 3559 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
170169imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
171145, 162, 165, 170syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
172 rspe 3237 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝐴 ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
173130, 144, 171, 172syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1741733exp 1118 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → (((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
175127, 128, 174rexlimd 3250 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
176126, 175mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1771763exp 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
178177rexlimdv 3212 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
17961, 178mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1801793exp 1118 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
181180rexlimdv 3212 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
182181imp 407 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
183182adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
184183ad2antrr 723 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
1853ad6antr 733 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑅 ∈ ℂ)
1867ad6antr 733 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝐿 ∈ ℂ)
187185, 186subcld 11332 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
188187abscld 15148 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
189 simp-6l 784 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝜑)
190 simplr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑏𝐴)
19136ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑏𝐴) → (𝐹𝑏) ∈ ℂ)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑏) ∈ ℂ)
193185, 192subcld 11332 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅 − (𝐹𝑏)) ∈ ℂ)
194193abscld 15148 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) ∈ ℝ)
195 simp-6r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑥 ∈ ℂ)
196192, 195subcld 11332 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑏) − 𝑥) ∈ ℂ)
197196abscld 15148 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) ∈ ℝ)
198194, 197readdcld 11004 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) ∈ ℝ)
199 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑎𝐴)
20036ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ℂ)
201189, 199, 200syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
202195, 201subcld 11332 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑥 − (𝐹𝑎)) ∈ ℂ)
203202abscld 15148 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) ∈ ℝ)
204198, 203readdcld 11004 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) ∈ ℝ)
205201, 186subcld 11332 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑎) − 𝐿) ∈ ℂ)
206205abscld 15148 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) ∈ ℝ)
207204, 206readdcld 11004 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) ∈ ℝ)
20815a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 4 ∈ ℝ)
209 rpre 12738 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
210209ad5antlr 732 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑦 ∈ ℝ)
211208, 210remulcld 11005 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (4 · 𝑦) ∈ ℝ)
212185, 192, 195, 201, 186absnpncan3d 42846 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ≤ ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))))
213185, 192abssubd 15165 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) = (abs‘((𝐹𝑏) − 𝑅)))
214 simprr 770 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
215213, 214eqbrtrd 5096 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) < 𝑦)
216 simprl 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
217 simp-5r 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → 𝑥 ∈ ℂ)
218200ad5ant14 755 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
219218adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (𝐹𝑎) ∈ ℂ)
220217, 219abssubd 15165 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) = (abs‘((𝐹𝑎) − 𝑥)))
221 simplrl 774 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
222220, 221eqbrtrd 5096 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
223222adantr 481 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
224 simplrr 775 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
225224adantr 481 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
226194, 197, 203, 206, 210, 215, 216, 223, 225lt4addmuld 42845 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) < (4 · 𝑦))
227188, 207, 211, 212, 226lelttrd 11133 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) < (4 · 𝑦))
228227ex 413 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
229228adantl3r 747 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
230229reximdva 3203 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
231184, 230mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
232 fresin 6643 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
23336, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
234 ioosscn 13141 . . . . . . . . . . . . . . . . . . . . . . . 24 (-∞(,)𝐵) ⊆ ℂ
23546, 234sstri 3930 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ
236235a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
237233, 236, 56ellimc3 25043 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))))
2386, 237mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)))
239238simprd 496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
240239r19.21bi 3134 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
2412403ad2ant1 1132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
242 simp11l 1283 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝜑)
243 simp12 1203 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑧 ∈ ℝ+)
244 simp2 1136 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑣 ∈ ℝ+)
245 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑢 ↔ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
246245rexbidv 3226 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢 ↔ ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
247 inss1 4162 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
248247a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
24948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ)
25079, 81restlp 22334 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25171, 73, 249, 250syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
25285fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
253252a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
254248, 251, 2533sstr4d 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
255254, 54sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
256236, 56islpcn 43180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) ↔ ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢))
257255, 256mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
2582573ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
259246, 258, 95rspcdva 3562 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
260 eldifi 4061 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
26148, 260sselid 3919 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ ℝ)
26273sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
26356adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ ℂ)
264262, 263subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑎 ∈ ℝ) → (𝑎𝐵) ∈ ℂ)
265264abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
2662653ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
267266adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) ∈ ℝ)
268105ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
269108ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
270 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
271114ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
272267, 268, 269, 270, 271ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
273117ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
274 min2 12924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
275107, 111, 274syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
2762753adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
277276ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
278267, 268, 273, 270, 277ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑣)
279272, 278jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
280279ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
281261, 280sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
282281reximdva 3203 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
283259, 282mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
284242, 243, 244, 283syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
285 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑎(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
286 nfre1 3239 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
287260elin1d 4132 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐴)
2882873ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐴)
289 simp113 1303 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
290 eldifsni 4723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐵)
291290adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐵)
292 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
293291, 292jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
2942933adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
295 neeq1 3006 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (𝑤𝐵𝑎𝐵))
296 fvoveq1 7298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → (abs‘(𝑤𝐵)) = (abs‘(𝑎𝐵)))
297296breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑎𝐵)) < 𝑧))
298295, 297anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)))
299298imbrov2fvoveq 7300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)))
300299rspcva 3559 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦))
301300imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
302288, 289, 294, 301syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
3032603ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
3042423ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝜑)
305 simp13 1204 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
306 nfra1 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑤𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
307148, 306nfan 1902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
308 elinel2 4130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → 𝑤 ∈ (-∞(,)𝐵))
309308fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑤) = (𝐹𝑤))
310309eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (𝐹𝑤) = ((𝐹 ↾ (-∞(,)𝐵))‘𝑤))
311310fvoveq1d 7297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
3123113ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
313 rspa 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
3143133impia 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
3153143adant1l 1175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
316312, 315eqbrtrd 5096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)
3173163exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)))
318307, 317ralrimi 3141 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
319304, 305, 318syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
320290anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ (abs‘(𝑎𝐵)) < 𝑣) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
321320adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
3223213adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
323296breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑎𝐵)) < 𝑣))
324295, 323anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
325324imbrov2fvoveq 7300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
326325rspcva 3559 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
327326imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
328303, 319, 322, 327syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
329 rspe 3237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
330288, 302, 328, 329syl12anc 834 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3313303exp 1118 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → (((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
332285, 286, 331rexlimd 3250 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
333284, 332mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3343333exp 1118 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
335334rexlimdv 3212 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
336241, 335mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
3373363exp 1118 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
338337rexlimdv 3212 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
339338imp 407 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
340339adantllr 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
341231, 340reximddv3 42700 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
34232, 33, 35, 341syl21anc 835 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
343342ex 413 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
34424, 25, 31, 343vtoclf 3497 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
34519, 344mpd 15 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
346 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
347 abssubrp 42814 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝑅𝐿) → (abs‘(𝑅𝐿)) ∈ ℝ+)
3483, 7, 11, 347syl3anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℝ+)
349348rpcnd 12774 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℂ)
350349adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) ∈ ℂ)
351 4cn 12058 . . . . . . . . . . . . . 14 4 ∈ ℂ
352351a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ∈ ℂ)
353 4ne0 12081 . . . . . . . . . . . . . 14 4 ≠ 0
354353a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ≠ 0)
355350, 352, 354divcan2d 11753 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (4 · ((abs‘(𝑅𝐿)) / 4)) = (abs‘(𝑅𝐿)))
356346, 355breqtrd 5100 . . . . . . . . . . 11 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
357356ex 413 . . . . . . . . . 10 (𝜑 → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
358357a1d 25 . . . . . . . . 9 (𝜑 → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
359358ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
360359rexlimdvv 3222 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
361345, 360mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
3629abscld 15148 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
363362ltnrd 11109 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ¬ (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
364361, 363pm2.65da 814 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
365364ex 413 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
366 imnan 400 . . . 4 ((𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ↔ ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
367365, 366sylib 217 . . 3 (𝜑 → ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
368 limclner.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
369368, 73sstrd 3931 . . . 4 (𝜑𝐴 ⊆ ℂ)
37036, 369, 56ellimc3 25043 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))))
371367, 370mtbird 325 . 2 (𝜑 → ¬ 𝑥 ∈ (𝐹 lim 𝐵))
372371eq0rdv 4338 1 (𝜑 → (𝐹 lim 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  cin 3886  wss 3887  c0 4256  ifcif 4459  {csn 4561   cuni 4839   class class class wbr 5074  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  4c4 12030  +crp 12730  (,)cioo 13079  abscabs 14945  t crest 17131  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  Topctop 22042  limPtclp 22285   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  limclr  43196  jumpncnp  43439
  Copyright terms: Public domain W3C validator