Step | Hyp | Ref
| Expression |
1 | | simp111 1300 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝐾 ∈ HL) |
2 | | simp112 1301 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝑊 ∈ 𝐻) |
3 | | simp12 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simp13 1203 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
5 | | simp113 1302 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝐹 ∈ 𝑇) |
6 | | simp2l 1197 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝐹‘𝑃) = 𝑄) |
7 | | cdlemg2id.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
8 | | cdlemg2id.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
9 | | eqid 2738 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
10 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
11 | | cdlemg2id.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | cdlemg2id.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | cdlemg2id.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | eqid 2738 |
. . . . 5
⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) |
15 | | eqid 2738 |
. . . . 5
⊢ ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) |
16 | | eqid 2738 |
. . . . 5
⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) |
17 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) |
18 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemg2dN 38531 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑄)) → 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))) |
19 | 1, 2, 3, 4, 5, 6, 18 | syl222anc 1384 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))) |
20 | 19 | fveq1d 6758 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝐹‘𝑋) = ((𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑋)) |
21 | | simp2r 1198 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝑋 ∈ 𝐵) |
22 | | simp3 1136 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → 𝑃 = 𝑄) |
23 | 17 | cdleme31id 38335 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑃 = 𝑄) → ((𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑋) = 𝑋) |
24 | 21, 22, 23 | syl2anc 583 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → ((𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑋) = 𝑋) |
25 | 20, 24 | eqtrd 2778 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝐹‘𝑋) = 𝑋) |