| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | 
| 2 |  | simpl1 1191 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ HL) | 
| 3 |  | simpl3 1193 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝑃) | 
| 4 |  | llncvrlpln2.n | . . . . . 6
⊢ 𝑁 = (LLines‘𝐾) | 
| 5 |  | llncvrlpln2.p | . . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) | 
| 6 | 4, 5 | lplnnelln 39549 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑃) → ¬ 𝑌 ∈ 𝑁) | 
| 7 | 2, 3, 6 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → ¬ 𝑌 ∈ 𝑁) | 
| 8 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝑁) | 
| 9 |  | eleq1 2828 | . . . . . 6
⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑁 ↔ 𝑌 ∈ 𝑁)) | 
| 10 | 8, 9 | syl5ibcom 245 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (𝑋 = 𝑌 → 𝑌 ∈ 𝑁)) | 
| 11 | 10 | necon3bd 2953 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑌 ∈ 𝑁 → 𝑋 ≠ 𝑌)) | 
| 12 | 7, 11 | mpd 15 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≠ 𝑌) | 
| 13 |  | llncvrlpln2.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 14 |  | eqid 2736 | . . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) | 
| 15 | 13, 14 | pltval 18378 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | 
| 16 | 15 | adantr 480 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | 
| 17 | 1, 12, 16 | mpbir2and 713 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋(lt‘𝐾)𝑌) | 
| 18 |  | simpl1 1191 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL) | 
| 19 |  | simpl2 1192 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ 𝑁) | 
| 20 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 21 | 20, 4 | llnbase 39512 | . . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) | 
| 22 | 19, 21 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾)) | 
| 23 |  | simpl3 1193 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ 𝑃) | 
| 24 | 20, 5 | lplnbase 39537 | . . . . 5
⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) | 
| 25 | 23, 24 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾)) | 
| 26 |  | simpr 484 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌) | 
| 27 |  | eqid 2736 | . . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 28 |  | llncvrlpln2.c | . . . . 5
⊢ 𝐶 = ( ⋖ ‘𝐾) | 
| 29 |  | eqid 2736 | . . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 30 | 20, 13, 14, 27, 28, 29 | hlrelat3 39415 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) | 
| 31 | 18, 22, 25, 26, 30 | syl31anc 1374 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) | 
| 32 | 20, 13, 27, 29, 5 | islpln2 39539 | . . . . . . . 8
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))))) | 
| 33 | 32 | adantr 480 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))))) | 
| 34 |  | simp3 1138 | . . . . . . . . . . 11
⊢ ((𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) | 
| 35 | 20, 27, 29, 4 | islln2 39514 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞))))) | 
| 36 |  | simp3l 1201 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶(𝑋(join‘𝐾)𝑟)) | 
| 37 |  | simp3r 1202 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) ≤ 𝑌) | 
| 38 |  | simp12r 1287 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋 = (𝑝(join‘𝐾)𝑞)) | 
| 39 | 38 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) | 
| 40 |  | simp22 1207 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) | 
| 41 | 37, 39, 40 | 3brtr3d 5173 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) | 
| 42 |  | simp111 1302 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝐾 ∈ HL) | 
| 43 |  | simp112 1303 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑝 ∈ (Atoms‘𝐾)) | 
| 44 |  | simp113 1304 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑞 ∈ (Atoms‘𝐾)) | 
| 45 |  | simp23 1208 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑟 ∈ (Atoms‘𝐾)) | 
| 46 | 43, 44, 45 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾))) | 
| 47 |  | simp13l 1288 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑠 ∈ (Atoms‘𝐾)) | 
| 48 |  | simp13r 1289 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑡 ∈ (Atoms‘𝐾)) | 
| 49 |  | simp21 1206 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑢 ∈ (Atoms‘𝐾)) | 
| 50 | 47, 48, 49 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) | 
| 51 | 36, 38, 39 | 3brtr3d 5173 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) | 
| 52 | 20, 27, 29 | hlatjcl 39369 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) | 
| 53 | 42, 43, 44, 52 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) | 
| 54 | 20, 13, 27, 28, 29 | cvr1 39413 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) | 
| 55 | 42, 53, 45, 54 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) | 
| 56 | 51, 55 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞)) | 
| 57 |  | simp12l 1286 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑝 ≠ 𝑞) | 
| 58 | 13, 27, 29 | 3at 39493 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ∧ 𝑝 ≠ 𝑞)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) | 
| 59 | 42, 46, 50, 56, 57, 58 | syl32anc 1379 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) | 
| 60 | 41, 59 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) | 
| 61 | 60, 39, 40 | 3eqtr4d 2786 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) = 𝑌) | 
| 62 | 36, 61 | breqtrd 5168 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶𝑌) | 
| 63 | 62 | 3exp 1119 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))) | 
| 64 | 63 | 3expd 1353 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) | 
| 65 | 64 | 3exp 1119 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) | 
| 66 | 65 | 3expib 1122 | . . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))))))) | 
| 67 | 66 | rexlimdvv 3211 | . . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) | 
| 68 | 67 | adantld 490 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) | 
| 69 | 35, 68 | sylbid 240 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) | 
| 70 | 69 | imp31 417 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) | 
| 71 | 34, 70 | syl7 74 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → ((𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) | 
| 72 | 71 | rexlimdv 3152 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) | 
| 73 | 72 | rexlimdvva 3212 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) | 
| 74 | 73 | adantld 490 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) | 
| 75 | 33, 74 | sylbid 240 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑌 ∈ 𝑃 → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) | 
| 76 | 75 | 3impia 1117 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))) | 
| 77 | 76 | rexlimdv 3152 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)) | 
| 78 | 77 | imp 406 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶𝑌) | 
| 79 | 31, 78 | syldan 591 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌) | 
| 80 | 17, 79 | syldan 591 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋𝐶𝑌) |