Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln2 Structured version   Visualization version   GIF version

Theorem llncvrlpln2 36853
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln2.l = (le‘𝐾)
llncvrlpln2.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln2.n 𝑁 = (LLines‘𝐾)
llncvrlpln2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem llncvrlpln2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑌𝑃)
4 llncvrlpln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
5 llncvrlpln2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
64, 5lplnnelln 36842 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
72, 3, 6syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → ¬ 𝑌𝑁)
8 simpl2 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑁)
9 eleq1 2877 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑁𝑌𝑁))
108, 9syl5ibcom 248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑁))
1110necon3bd 3001 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (¬ 𝑌𝑁𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 llncvrlpln2.l . . . . 5 = (le‘𝐾)
14 eqid 2798 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 17562 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑁)
20 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4llnbase 36805 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑃)
2420, 5lplnbase 36830 . . . . 5 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 488 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2798 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 llncvrlpln2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2798 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 36708 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3118, 22, 25, 26, 30syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3220, 13, 27, 29, 5islpln2 36832 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
3332adantr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
34 simp3 1135 . . . . . . . . . . 11 ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
3520, 27, 29, 4islln2 36807 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))))
36 simp3l 1198 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶(𝑋(join‘𝐾)𝑟))
37 simp3r 1199 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) 𝑌)
38 simp12r 1284 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋 = (𝑝(join‘𝐾)𝑞))
3938oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
40 simp22 1204 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
4137, 39, 403brtr3d 5061 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
42 simp111 1299 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝐾 ∈ HL)
43 simp112 1300 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
44 simp113 1301 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑞 ∈ (Atoms‘𝐾))
45 simp23 1205 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑟 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1125 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)))
47 simp13l 1285 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑠 ∈ (Atoms‘𝐾))
48 simp13r 1286 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑡 ∈ (Atoms‘𝐾))
49 simp21 1203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑢 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1125 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)))
5136, 38, 393brtr3d 5061 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
5220, 27, 29hlatjcl 36663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5342, 43, 44, 52syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5420, 13, 27, 28, 29cvr1 36706 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5542, 53, 45, 54syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5651, 55mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
57 simp12l 1283 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝𝑞)
5813, 27, 293at 36786 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑝𝑞)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
5942, 46, 50, 56, 57, 58syl32anc 1375 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
6041, 59mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
6160, 39, 403eqtr4d 2843 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = 𝑌)
6236, 61breqtrd 5056 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
63623exp 1116 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
64633expd 1350 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
65643exp 1116 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
66653expib 1119 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))))))
6766rexlimdvv 3252 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6867adantld 494 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6935, 68sylbid 243 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑁 → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
7069imp31 421 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7134, 70syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7271rexlimdv 3242 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7372rexlimdvva 3253 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7473adantld 494 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7533, 74sylbid 243 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
76753impia 1114 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
7776rexlimdv 3242 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))
7877imp 410 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
7931, 78syldan 594 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8017, 79syldan 594 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  ltcplt 17543  joincjn 17546  ccvr 36558  Atomscatm 36559  HLchlt 36646  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by:  llncvrlpln  36854  2llnmj  36856  lplncmp  36858  lplnexatN  36859  2llnm2N  36864  2lplnmj  36918
  Copyright terms: Public domain W3C validator