Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln2 Structured version   Visualization version   GIF version

Theorem llncvrlpln2 35516
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln2.l = (le‘𝐾)
llncvrlpln2.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln2.n 𝑁 = (LLines‘𝐾)
llncvrlpln2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem llncvrlpln2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑌𝑃)
4 llncvrlpln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
5 llncvrlpln2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
64, 5lplnnelln 35505 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
72, 3, 6syl2anc 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → ¬ 𝑌𝑁)
8 simpl2 1244 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑁)
9 eleq1 2832 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑁𝑌𝑁))
108, 9syl5ibcom 236 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑁))
1110necon3bd 2951 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (¬ 𝑌𝑁𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 llncvrlpln2.l . . . . 5 = (le‘𝐾)
14 eqid 2765 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 17229 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 472 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 704 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1242 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑁)
20 eqid 2765 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4llnbase 35468 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑃)
2420, 5lplnbase 35493 . . . . 5 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 477 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2765 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 llncvrlpln2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2765 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 35371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3118, 22, 25, 26, 30syl31anc 1492 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3220, 13, 27, 29, 5islpln2 35495 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
3332adantr 472 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
34 simp3 1168 . . . . . . . . . . 11 ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
3520, 27, 29, 4islln2 35470 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))))
36 simp3l 1258 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶(𝑋(join‘𝐾)𝑟))
37 simp3r 1259 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) 𝑌)
38 simp12r 1386 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋 = (𝑝(join‘𝐾)𝑞))
3938oveq1d 6859 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
40 simp22 1264 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
4137, 39, 403brtr3d 4842 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
42 simp111 1401 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝐾 ∈ HL)
43 simp112 1402 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
44 simp113 1403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑞 ∈ (Atoms‘𝐾))
45 simp23 1265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑟 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)))
47 simp13l 1387 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑠 ∈ (Atoms‘𝐾))
48 simp13r 1388 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑡 ∈ (Atoms‘𝐾))
49 simp21 1263 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑢 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)))
5136, 38, 393brtr3d 4842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
5220, 27, 29hlatjcl 35326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5342, 43, 44, 52syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5420, 13, 27, 28, 29cvr1 35369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5542, 53, 45, 54syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5651, 55mpbird 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
57 simp12l 1385 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝𝑞)
5813, 27, 293at 35449 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑝𝑞)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
5942, 46, 50, 56, 57, 58syl32anc 1497 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
6041, 59mpbid 223 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
6160, 39, 403eqtr4d 2809 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = 𝑌)
6236, 61breqtrd 4837 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
63623exp 1148 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
64633expd 1462 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
65643exp 1148 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
66653expib 1152 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))))))
6766rexlimdvv 3184 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6867adantld 484 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6935, 68sylbid 231 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑁 → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
7069imp31 408 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7134, 70syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7271rexlimdv 3177 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7372rexlimdvva 3185 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7473adantld 484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7533, 74sylbid 231 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
76753impia 1145 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
7776rexlimdv 3177 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))
7877imp 395 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
7931, 78syldan 585 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8017, 79syldan 585 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4811  cfv 6070  (class class class)co 6844  Basecbs 16133  lecple 16224  ltcplt 17210  joincjn 17213  ccvr 35221  Atomscatm 35222  HLchlt 35309  LLinesclln 35450  LPlanesclpl 35451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-proset 17197  df-poset 17215  df-plt 17227  df-lub 17243  df-glb 17244  df-join 17245  df-meet 17246  df-p0 17308  df-lat 17315  df-clat 17377  df-oposet 35135  df-ol 35137  df-oml 35138  df-covers 35225  df-ats 35226  df-atl 35257  df-cvlat 35281  df-hlat 35310  df-llines 35457  df-lplanes 35458
This theorem is referenced by:  llncvrlpln  35517  2llnmj  35519  lplncmp  35521  lplnexatN  35522  2llnm2N  35527  2lplnmj  35581
  Copyright terms: Public domain W3C validator