Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln2 Structured version   Visualization version   GIF version

Theorem llncvrlpln2 39536
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln2.l = (le‘𝐾)
llncvrlpln2.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln2.n 𝑁 = (LLines‘𝐾)
llncvrlpln2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem llncvrlpln2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑌𝑃)
4 llncvrlpln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
5 llncvrlpln2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
64, 5lplnnelln 39525 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
72, 3, 6syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → ¬ 𝑌𝑁)
8 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑁)
9 eleq1 2816 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑁𝑌𝑁))
108, 9syl5ibcom 245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑁))
1110necon3bd 2939 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (¬ 𝑌𝑁𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 llncvrlpln2.l . . . . 5 = (le‘𝐾)
14 eqid 2729 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 18236 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑁)
20 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4llnbase 39488 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑃)
2420, 5lplnbase 39513 . . . . 5 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2729 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 llncvrlpln2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 39391 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3118, 22, 25, 26, 30syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌))
3220, 13, 27, 29, 5islpln2 39515 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
3332adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))))
34 simp3 1138 . . . . . . . . . . 11 ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
3520, 27, 29, 4islln2 39490 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))))
36 simp3l 1202 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶(𝑋(join‘𝐾)𝑟))
37 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) 𝑌)
38 simp12r 1288 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋 = (𝑝(join‘𝐾)𝑞))
3938oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
40 simp22 1208 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
4137, 39, 403brtr3d 5123 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
42 simp111 1303 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝐾 ∈ HL)
43 simp112 1304 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
44 simp113 1305 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑞 ∈ (Atoms‘𝐾))
45 simp23 1209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑟 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)))
47 simp13l 1289 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑠 ∈ (Atoms‘𝐾))
48 simp13r 1290 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑡 ∈ (Atoms‘𝐾))
49 simp21 1207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑢 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)))
5136, 38, 393brtr3d 5123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
5220, 27, 29hlatjcl 39346 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5342, 43, 44, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5420, 13, 27, 28, 29cvr1 39389 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5542, 53, 45, 54syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
5651, 55mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
57 simp12l 1287 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑝𝑞)
5813, 27, 293at 39469 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑝𝑞)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
5942, 46, 50, 56, 57, 58syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)))
6041, 59mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))
6160, 39, 403eqtr4d 2774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → (𝑋(join‘𝐾)𝑟) = 𝑌)
6236, 61breqtrd 5118 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
63623exp 1119 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
64633expd 1354 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
65643exp 1119 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
66653expib 1122 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))))))
6766rexlimdvv 3185 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6867adantld 490 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
6935, 68sylbid 240 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑁 → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))))
7069imp31 417 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7134, 70syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → ((𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))))
7271rexlimdv 3128 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7372rexlimdvva 3186 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7473adantld 490 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠𝑡 ∧ ¬ 𝑢 (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
7533, 74sylbid 240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑌𝑃 → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))))
76753impia 1117 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌)))
7776rexlimdv 3128 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌) → 𝑋𝐶𝑌))
7877imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) 𝑌)) → 𝑋𝐶𝑌)
7931, 78syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8017, 79syldan 591 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  ltcplt 18214  joincjn 18217  ccvr 39241  Atomscatm 39242  HLchlt 39329  LLinesclln 39470  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478
This theorem is referenced by:  llncvrlpln  39537  2llnmj  39539  lplncmp  39541  lplnexatN  39542  2llnm2N  39547  2lplnmj  39601
  Copyright terms: Public domain W3C validator