Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) |
2 | | simpl1 1189 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ HL) |
3 | | simpl3 1191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝑃) |
4 | | llncvrlpln2.n |
. . . . . 6
⊢ 𝑁 = (LLines‘𝐾) |
5 | | llncvrlpln2.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
6 | 4, 5 | lplnnelln 37487 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑃) → ¬ 𝑌 ∈ 𝑁) |
7 | 2, 3, 6 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → ¬ 𝑌 ∈ 𝑁) |
8 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝑁) |
9 | | eleq1 2826 |
. . . . . 6
⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑁 ↔ 𝑌 ∈ 𝑁)) |
10 | 8, 9 | syl5ibcom 244 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (𝑋 = 𝑌 → 𝑌 ∈ 𝑁)) |
11 | 10 | necon3bd 2956 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑌 ∈ 𝑁 → 𝑋 ≠ 𝑌)) |
12 | 7, 11 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≠ 𝑌) |
13 | | llncvrlpln2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
14 | | eqid 2738 |
. . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) |
15 | 13, 14 | pltval 17965 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
16 | 15 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
17 | 1, 12, 16 | mpbir2and 709 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋(lt‘𝐾)𝑌) |
18 | | simpl1 1189 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL) |
19 | | simpl2 1190 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ 𝑁) |
20 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
21 | 20, 4 | llnbase 37450 |
. . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
22 | 19, 21 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾)) |
23 | | simpl3 1191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ 𝑃) |
24 | 20, 5 | lplnbase 37475 |
. . . . 5
⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾)) |
26 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌) |
27 | | eqid 2738 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
28 | | llncvrlpln2.c |
. . . . 5
⊢ 𝐶 = ( ⋖ ‘𝐾) |
29 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
30 | 20, 13, 14, 27, 28, 29 | hlrelat3 37353 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) |
31 | 18, 22, 25, 26, 30 | syl31anc 1371 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) |
32 | 20, 13, 27, 29, 5 | islpln2 37477 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))))) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))))) |
34 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) |
35 | 20, 27, 29, 4 | islln2 37452 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞))))) |
36 | | simp3l 1199 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶(𝑋(join‘𝐾)𝑟)) |
37 | | simp3r 1200 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) ≤ 𝑌) |
38 | | simp12r 1285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋 = (𝑝(join‘𝐾)𝑞)) |
39 | 38 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) |
40 | | simp22 1205 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) |
41 | 37, 39, 40 | 3brtr3d 5101 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) |
42 | | simp111 1300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝐾 ∈ HL) |
43 | | simp112 1301 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑝 ∈ (Atoms‘𝐾)) |
44 | | simp113 1302 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑞 ∈ (Atoms‘𝐾)) |
45 | | simp23 1206 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑟 ∈ (Atoms‘𝐾)) |
46 | 43, 44, 45 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾))) |
47 | | simp13l 1286 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑠 ∈ (Atoms‘𝐾)) |
48 | | simp13r 1287 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑡 ∈ (Atoms‘𝐾)) |
49 | | simp21 1204 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑢 ∈ (Atoms‘𝐾)) |
50 | 47, 48, 49 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) |
51 | 36, 38, 39 | 3brtr3d 5101 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) |
52 | 20, 27, 29 | hlatjcl 37308 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
53 | 42, 43, 44, 52 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
54 | 20, 13, 27, 28, 29 | cvr1 37351 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) |
55 | 42, 53, 45, 54 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ↔ (𝑝(join‘𝐾)𝑞)𝐶((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) |
56 | 51, 55 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞)) |
57 | | simp12l 1284 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑝 ≠ 𝑞) |
58 | 13, 27, 29 | 3at 37431 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑟 ≤ (𝑝(join‘𝐾)𝑞) ∧ 𝑝 ≠ 𝑞)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) |
59 | 42, 46, 50, 56, 57, 58 | syl32anc 1376 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ≤ ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) |
60 | 41, 59 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) |
61 | 60, 39, 40 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → (𝑋(join‘𝐾)𝑟) = 𝑌) |
62 | 36, 61 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶𝑌) |
63 | 62 | 3exp 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))) |
64 | 63 | 3expd 1351 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) |
65 | 64 | 3exp 1117 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) |
66 | 65 | 3expib 1120 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))))))) |
67 | 66 | rexlimdvv 3221 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) |
68 | 67 | adantld 490 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) |
69 | 35, 68 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))))) |
70 | 69 | imp31 417 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → (𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) |
71 | 34, 70 | syl7 74 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (𝑢 ∈ (Atoms‘𝐾) → ((𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))))) |
72 | 71 | rexlimdv 3211 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾))) → (∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) |
73 | 72 | rexlimdvva 3222 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢)) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) |
74 | 73 | adantld 490 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ ¬ 𝑢 ≤ (𝑠(join‘𝐾)𝑡) ∧ 𝑌 = ((𝑠(join‘𝐾)𝑡)(join‘𝐾)𝑢))) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) |
75 | 33, 74 | sylbid 239 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑌 ∈ 𝑃 → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)))) |
76 | 75 | 3impia 1115 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (𝑟 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌))) |
77 | 76 | rexlimdv 3211 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌) → 𝑋𝐶𝑌)) |
78 | 77 | imp 406 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑟) ∧ (𝑋(join‘𝐾)𝑟) ≤ 𝑌)) → 𝑋𝐶𝑌) |
79 | 31, 78 | syldan 590 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌) |
80 | 17, 79 | syldan 590 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋 ≤ 𝑌) → 𝑋𝐶𝑌) |