Step | Hyp | Ref
| Expression |
1 | | simp11 1203 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (πΎ β HL β§ π β π΄ β§ π β π΄)) |
2 | | simp121 1305 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π
β π΄) |
3 | | simp122 1306 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
4 | 2, 3 | jca 512 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π
β π΄ β§ π β π΄)) |
5 | | simp13 1205 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β π΄ β§ π β π΄ β§ π β π΄)) |
6 | 1, 4, 5 | 3jca 1128 |
. . . 4
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄))) |
7 | | simp2l 1199 |
. . . 4
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
))) |
8 | 6, 7 | jca 512 |
. . 3
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)))) |
9 | | simp3lr 1245 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β€ ((π β¨ π) β¨ (π β¨ π))) |
10 | | simp3rl 1246 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π
β€ ((π β¨ π) β¨ (π β¨ π))) |
11 | | simp3rr 1247 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β€ ((π β¨ π) β¨ (π β¨ π))) |
12 | | simp111 1302 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β πΎ β HL) |
13 | 12 | hllatd 38222 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β πΎ β Lat) |
14 | | eqid 2732 |
. . . . . . . . 9
β’
(BaseβπΎ) =
(BaseβπΎ) |
15 | | 4at.a |
. . . . . . . . 9
β’ π΄ = (AtomsβπΎ) |
16 | 14, 15 | atbase 38147 |
. . . . . . . 8
β’ (π
β π΄ β π
β (BaseβπΎ)) |
17 | 2, 16 | syl 17 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π
β (BaseβπΎ)) |
18 | 14, 15 | atbase 38147 |
. . . . . . . 8
β’ (π β π΄ β π β (BaseβπΎ)) |
19 | 3, 18 | syl 17 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β (BaseβπΎ)) |
20 | | simp123 1307 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
21 | | simp131 1308 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
22 | | 4at.j |
. . . . . . . . . 10
β’ β¨ =
(joinβπΎ) |
23 | 14, 22, 15 | hlatjcl 38225 |
. . . . . . . . 9
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
24 | 12, 20, 21, 23 | syl3anc 1371 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β¨ π) β (BaseβπΎ)) |
25 | | simp132 1309 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
26 | | simp133 1310 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
27 | 14, 22, 15 | hlatjcl 38225 |
. . . . . . . . 9
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
28 | 12, 25, 26, 27 | syl3anc 1371 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β¨ π) β (BaseβπΎ)) |
29 | 14, 22 | latjcl 18388 |
. . . . . . . 8
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ (π β¨ π) β (BaseβπΎ)) β ((π β¨ π) β¨ (π β¨ π)) β (BaseβπΎ)) |
30 | 13, 24, 28, 29 | syl3anc 1371 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β¨ π) β¨ (π β¨ π)) β (BaseβπΎ)) |
31 | | 4at.l |
. . . . . . . 8
β’ β€ =
(leβπΎ) |
32 | 14, 31, 22 | latjle12 18399 |
. . . . . . 7
β’ ((πΎ β Lat β§ (π
β (BaseβπΎ) β§ π β (BaseβπΎ) β§ ((π β¨ π) β¨ (π β¨ π)) β (BaseβπΎ))) β ((π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β (π
β¨ π) β€ ((π β¨ π) β¨ (π β¨ π)))) |
33 | 13, 17, 19, 30, 32 | syl13anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β (π
β¨ π) β€ ((π β¨ π) β¨ (π β¨ π)))) |
34 | 10, 11, 33 | mpbi2and 710 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π
β¨ π) β€ ((π β¨ π) β¨ (π β¨ π))) |
35 | | simp113 1304 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
36 | 14, 15 | atbase 38147 |
. . . . . . 7
β’ (π β π΄ β π β (BaseβπΎ)) |
37 | 35, 36 | syl 17 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β (BaseβπΎ)) |
38 | 14, 22, 15 | hlatjcl 38225 |
. . . . . . 7
β’ ((πΎ β HL β§ π
β π΄ β§ π β π΄) β (π
β¨ π) β (BaseβπΎ)) |
39 | 12, 2, 3, 38 | syl3anc 1371 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π
β¨ π) β (BaseβπΎ)) |
40 | 14, 31, 22 | latjle12 18399 |
. . . . . 6
β’ ((πΎ β Lat β§ (π β (BaseβπΎ) β§ (π
β¨ π) β (BaseβπΎ) β§ ((π β¨ π) β¨ (π β¨ π)) β (BaseβπΎ))) β ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ (π
β¨ π) β€ ((π β¨ π) β¨ (π β¨ π))) β (π β¨ (π
β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)))) |
41 | 13, 37, 39, 30, 40 | syl13anc 1372 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ (π
β¨ π) β€ ((π β¨ π) β¨ (π β¨ π))) β (π β¨ (π
β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)))) |
42 | 9, 34, 41 | mpbi2and 710 |
. . . 4
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β¨ (π
β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π))) |
43 | | simp3ll 1244 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β€ ((π β¨ π) β¨ (π β¨ π))) |
44 | | simp112 1303 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β π β π΄) |
45 | | simp2r 1200 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β Β¬ π β€ ((π β¨ π) β¨ π)) |
46 | 31, 22, 15 | 4atlem12a 38469 |
. . . . . 6
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) |
47 | 12, 44, 20, 5, 45, 46 | syl311anc 1384 |
. . . . 5
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) |
48 | 43, 47 | mpbid 231 |
. . . 4
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
49 | 42, 48 | breqtrrd 5175 |
. . 3
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β (π β¨ (π
β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π))) |
50 | 31, 22, 15 | 4atlem11 38468 |
. . 3
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
))) β ((π β¨ (π
β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π
β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) |
51 | 8, 49, 50 | sylc 65 |
. 2
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β¨ π) β¨ (π
β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
52 | 51, 48 | eqtrd 2772 |
1
β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π
)) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π
β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β¨ π) β¨ (π
β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |