Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12b Structured version   Visualization version   GIF version

Theorem 4atlem12b 39605
Description: Lemma for 4at 39607. Substitute 𝑇 for 𝑃 (cont.). (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem12b ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊)))

Proof of Theorem 4atlem12b
StepHypRef Expression
1 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simp121 1306 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑅𝐴)
3 simp122 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑆𝐴)
42, 3jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑅𝐴𝑆𝐴))
5 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
61, 4, 53jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
7 simp2l 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
86, 7jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
9 simp3lr 1246 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑄 ((𝑇 𝑈) (𝑉 𝑊)))
10 simp3rl 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑅 ((𝑇 𝑈) (𝑉 𝑊)))
11 simp3rr 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑆 ((𝑇 𝑈) (𝑉 𝑊)))
12 simp111 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝐾 ∈ HL)
1312hllatd 39357 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝐾 ∈ Lat)
14 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
15 4at.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1614, 15atbase 39282 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
172, 16syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑅 ∈ (Base‘𝐾))
1814, 15atbase 39282 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
193, 18syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑆 ∈ (Base‘𝐾))
20 simp123 1308 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑇𝐴)
21 simp131 1309 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑈𝐴)
22 4at.j . . . . . . . . . 10 = (join‘𝐾)
2314, 22, 15hlatjcl 39360 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
2412, 20, 21, 23syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑇 𝑈) ∈ (Base‘𝐾))
25 simp132 1310 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑉𝐴)
26 simp133 1311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑊𝐴)
2714, 22, 15hlatjcl 39360 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
2812, 25, 26, 27syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑉 𝑊) ∈ (Base‘𝐾))
2914, 22latjcl 18398 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
3013, 24, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
31 4at.l . . . . . . . 8 = (le‘𝐾)
3214, 31, 22latjle12 18409 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑇 𝑈) (𝑉 𝑊))))
3313, 17, 19, 30, 32syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑇 𝑈) (𝑉 𝑊))))
3410, 11, 33mpbi2and 712 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑅 𝑆) ((𝑇 𝑈) (𝑉 𝑊)))
35 simp113 1305 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑄𝐴)
3614, 15atbase 39282 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑄 ∈ (Base‘𝐾))
3814, 22, 15hlatjcl 39360 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
3912, 2, 3, 38syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑅 𝑆) ∈ (Base‘𝐾))
4014, 31, 22latjle12 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ((𝑇 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑇 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊))))
4113, 37, 39, 30, 40syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑄 ((𝑇 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑇 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊))))
429, 34, 41mpbi2and 712 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑄 (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊)))
43 simp3ll 1245 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑃 ((𝑇 𝑈) (𝑉 𝑊)))
44 simp112 1304 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → 𝑃𝐴)
45 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ¬ 𝑃 ((𝑈 𝑉) 𝑊))
4631, 22, 154atlem12a 39604 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))
4712, 44, 20, 5, 45, 46syl311anc 1386 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))
4843, 47mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊)))
4942, 48breqtrrd 5135 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)))
5031, 22, 154atlem11 39603 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
518, 49, 50sylc 65 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
5251, 48eqtrd 2764 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) ∧ ((𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑇 𝑈) (𝑉 𝑊))) ∧ (𝑅 ((𝑇 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑇 𝑈) (𝑉 𝑊))))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494
This theorem is referenced by:  4atlem12  39606
  Copyright terms: Public domain W3C validator