MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1306
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1207 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28910  axpasch  28920  exatleN  39449  ps-2b  39527  3atlem1  39528  3atlem2  39529  3atlem4  39531  3atlem5  39532  3atlem6  39533  2llnjaN  39611  4atlem12b  39656  2lplnja  39664  dalempea  39671  dath2  39782  lneq2at  39823  llnexchb2  39914  dalawlem1  39916  osumcllem7N  40007  lhpexle3lem  40056  cdleme26ee  40405  cdlemg34  40757  cdlemg36  40759  cdlemj1  40866  cdlemj2  40867  cdlemk23-3  40947  cdlemk25-3  40949  cdlemk26b-3  40950  cdlemk26-3  40951  cdlemk27-3  40952  cdleml3N  41023  iscnrm3llem2  48987
  Copyright terms: Public domain W3C validator