MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1305
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1206 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ax5seglem3  28964  axpasch  28974  exatleN  39361  ps-2b  39439  3atlem1  39440  3atlem2  39441  3atlem4  39443  3atlem5  39444  3atlem6  39445  2llnjaN  39523  4atlem12b  39568  2lplnja  39576  dalempea  39583  dath2  39694  lneq2at  39735  llnexchb2  39826  dalawlem1  39828  osumcllem7N  39919  lhpexle3lem  39968  cdleme26ee  40317  cdlemg34  40669  cdlemg36  40671  cdlemj1  40778  cdlemj2  40779  cdlemk23-3  40859  cdlemk25-3  40861  cdlemk26b-3  40862  cdlemk26-3  40863  cdlemk27-3  40864  cdleml3N  40935  iscnrm3llem2  48630
  Copyright terms: Public domain W3C validator