| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp21 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28913 axpasch 28923 exatleN 39526 ps-2b 39604 3atlem1 39605 3atlem2 39606 3atlem4 39608 3atlem5 39609 3atlem6 39610 2llnjaN 39688 4atlem12b 39733 2lplnja 39741 dalempea 39748 dath2 39859 lneq2at 39900 llnexchb2 39991 dalawlem1 39993 osumcllem7N 40084 lhpexle3lem 40133 cdleme26ee 40482 cdlemg34 40834 cdlemg36 40836 cdlemj1 40943 cdlemj2 40944 cdlemk23-3 41024 cdlemk25-3 41026 cdlemk26b-3 41027 cdlemk26-3 41028 cdlemk27-3 41029 cdleml3N 41100 iscnrm3llem2 49077 |
| Copyright terms: Public domain | W3C validator |