|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp21 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: ax5seglem3 28947 axpasch 28957 exatleN 39407 ps-2b 39485 3atlem1 39486 3atlem2 39487 3atlem4 39489 3atlem5 39490 3atlem6 39491 2llnjaN 39569 4atlem12b 39614 2lplnja 39622 dalempea 39629 dath2 39740 lneq2at 39781 llnexchb2 39872 dalawlem1 39874 osumcllem7N 39965 lhpexle3lem 40014 cdleme26ee 40363 cdlemg34 40715 cdlemg36 40717 cdlemj1 40824 cdlemj2 40825 cdlemk23-3 40905 cdlemk25-3 40907 cdlemk26b-3 40908 cdlemk26-3 40909 cdlemk27-3 40910 cdleml3N 40981 iscnrm3llem2 48854 | 
| Copyright terms: Public domain | W3C validator |