MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1304
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1205 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1132 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ax5seglem3  27308  axpasch  27318  exatleN  37425  ps-2b  37503  3atlem1  37504  3atlem2  37505  3atlem4  37507  3atlem5  37508  3atlem6  37509  2llnjaN  37587  4atlem12b  37632  2lplnja  37640  dalempea  37647  dath2  37758  lneq2at  37799  llnexchb2  37890  dalawlem1  37892  osumcllem7N  37983  lhpexle3lem  38032  cdleme26ee  38381  cdlemg34  38733  cdlemg36  38735  cdlemj1  38842  cdlemj2  38843  cdlemk23-3  38923  cdlemk25-3  38925  cdlemk26b-3  38926  cdlemk26-3  38927  cdlemk27-3  38928  cdleml3N  38999  iscnrm3llem2  46255
  Copyright terms: Public domain W3C validator