Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1205 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ax5seglem3 27308 axpasch 27318 exatleN 37425 ps-2b 37503 3atlem1 37504 3atlem2 37505 3atlem4 37507 3atlem5 37508 3atlem6 37509 2llnjaN 37587 4atlem12b 37632 2lplnja 37640 dalempea 37647 dath2 37758 lneq2at 37799 llnexchb2 37890 dalawlem1 37892 osumcllem7N 37983 lhpexle3lem 38032 cdleme26ee 38381 cdlemg34 38733 cdlemg36 38735 cdlemj1 38842 cdlemj2 38843 cdlemk23-3 38923 cdlemk25-3 38925 cdlemk26b-3 38926 cdlemk26-3 38927 cdlemk27-3 38928 cdleml3N 38999 iscnrm3llem2 46255 |
Copyright terms: Public domain | W3C validator |