Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1208 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant1 1135 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: ax5seglem3 27022 axpasch 27032 exatleN 37155 ps-2b 37233 3atlem1 37234 3atlem2 37235 3atlem4 37237 3atlem5 37238 3atlem6 37239 2llnjaN 37317 4atlem12b 37362 2lplnja 37370 dalempea 37377 dath2 37488 lneq2at 37529 llnexchb2 37620 dalawlem1 37622 osumcllem7N 37713 lhpexle3lem 37762 cdleme26ee 38111 cdlemg34 38463 cdlemg36 38465 cdlemj1 38572 cdlemj2 38573 cdlemk23-3 38653 cdlemk25-3 38655 cdlemk26b-3 38656 cdlemk26-3 38657 cdlemk27-3 38658 cdleml3N 38729 iscnrm3llem2 45917 |
Copyright terms: Public domain | W3C validator |