MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1306
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1207 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28915  axpasch  28925  exatleN  39428  ps-2b  39506  3atlem1  39507  3atlem2  39508  3atlem4  39510  3atlem5  39511  3atlem6  39512  2llnjaN  39590  4atlem12b  39635  2lplnja  39643  dalempea  39650  dath2  39761  lneq2at  39802  llnexchb2  39893  dalawlem1  39895  osumcllem7N  39986  lhpexle3lem  40035  cdleme26ee  40384  cdlemg34  40736  cdlemg36  40738  cdlemj1  40845  cdlemj2  40846  cdlemk23-3  40926  cdlemk25-3  40928  cdlemk26b-3  40929  cdlemk26-3  40930  cdlemk27-3  40931  cdleml3N  41002  iscnrm3llem2  48891
  Copyright terms: Public domain W3C validator