| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp21 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28865 axpasch 28875 exatleN 39405 ps-2b 39483 3atlem1 39484 3atlem2 39485 3atlem4 39487 3atlem5 39488 3atlem6 39489 2llnjaN 39567 4atlem12b 39612 2lplnja 39620 dalempea 39627 dath2 39738 lneq2at 39779 llnexchb2 39870 dalawlem1 39872 osumcllem7N 39963 lhpexle3lem 40012 cdleme26ee 40361 cdlemg34 40713 cdlemg36 40715 cdlemj1 40822 cdlemj2 40823 cdlemk23-3 40903 cdlemk25-3 40905 cdlemk26b-3 40906 cdlemk26-3 40907 cdlemk27-3 40908 cdleml3N 40979 iscnrm3llem2 48942 |
| Copyright terms: Public domain | W3C validator |