| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp21 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28910 axpasch 28920 exatleN 39449 ps-2b 39527 3atlem1 39528 3atlem2 39529 3atlem4 39531 3atlem5 39532 3atlem6 39533 2llnjaN 39611 4atlem12b 39656 2lplnja 39664 dalempea 39671 dath2 39782 lneq2at 39823 llnexchb2 39914 dalawlem1 39916 osumcllem7N 40007 lhpexle3lem 40056 cdleme26ee 40405 cdlemg34 40757 cdlemg36 40759 cdlemj1 40866 cdlemj2 40867 cdlemk23-3 40947 cdlemk25-3 40949 cdlemk26b-3 40950 cdlemk26-3 40951 cdlemk27-3 40952 cdleml3N 41023 iscnrm3llem2 48987 |
| Copyright terms: Public domain | W3C validator |