| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp21 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28894 axpasch 28904 exatleN 39383 ps-2b 39461 3atlem1 39462 3atlem2 39463 3atlem4 39465 3atlem5 39466 3atlem6 39467 2llnjaN 39545 4atlem12b 39590 2lplnja 39598 dalempea 39605 dath2 39716 lneq2at 39757 llnexchb2 39848 dalawlem1 39850 osumcllem7N 39941 lhpexle3lem 39990 cdleme26ee 40339 cdlemg34 40691 cdlemg36 40693 cdlemj1 40800 cdlemj2 40801 cdlemk23-3 40881 cdlemk25-3 40883 cdlemk26b-3 40884 cdlemk26-3 40885 cdlemk27-3 40886 cdleml3N 40957 iscnrm3llem2 48935 |
| Copyright terms: Public domain | W3C validator |