![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp121 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp121 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1203 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant1 1130 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: ax5seglem3 28661 axpasch 28671 exatleN 38769 ps-2b 38847 3atlem1 38848 3atlem2 38849 3atlem4 38851 3atlem5 38852 3atlem6 38853 2llnjaN 38931 4atlem12b 38976 2lplnja 38984 dalempea 38991 dath2 39102 lneq2at 39143 llnexchb2 39234 dalawlem1 39236 osumcllem7N 39327 lhpexle3lem 39376 cdleme26ee 39725 cdlemg34 40077 cdlemg36 40079 cdlemj1 40186 cdlemj2 40187 cdlemk23-3 40267 cdlemk25-3 40269 cdlemk26b-3 40270 cdlemk26-3 40271 cdlemk27-3 40272 cdleml3N 40343 iscnrm3llem2 47795 |
Copyright terms: Public domain | W3C validator |