MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1303
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1204 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1131 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ax5seglem3  27202  axpasch  27212  exatleN  37345  ps-2b  37423  3atlem1  37424  3atlem2  37425  3atlem4  37427  3atlem5  37428  3atlem6  37429  2llnjaN  37507  4atlem12b  37552  2lplnja  37560  dalempea  37567  dath2  37678  lneq2at  37719  llnexchb2  37810  dalawlem1  37812  osumcllem7N  37903  lhpexle3lem  37952  cdleme26ee  38301  cdlemg34  38653  cdlemg36  38655  cdlemj1  38762  cdlemj2  38763  cdlemk23-3  38843  cdlemk25-3  38845  cdlemk26b-3  38846  cdlemk26-3  38847  cdlemk27-3  38848  cdleml3N  38919  iscnrm3llem2  46132
  Copyright terms: Public domain W3C validator