MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp121 Structured version   Visualization version   GIF version

Theorem simp121 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp121 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp121
StepHypRef Expression
1 simp21 1203 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant1 1130 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086
This theorem is referenced by:  ax5seglem3  28661  axpasch  28671  exatleN  38769  ps-2b  38847  3atlem1  38848  3atlem2  38849  3atlem4  38851  3atlem5  38852  3atlem6  38853  2llnjaN  38931  4atlem12b  38976  2lplnja  38984  dalempea  38991  dath2  39102  lneq2at  39143  llnexchb2  39234  dalawlem1  39236  osumcllem7N  39327  lhpexle3lem  39376  cdleme26ee  39725  cdlemg34  40077  cdlemg36  40079  cdlemj1  40186  cdlemj2  40187  cdlemk23-3  40267  cdlemk25-3  40269  cdlemk26b-3  40270  cdlemk26-3  40271  cdlemk27-3  40272  cdleml3N  40343  iscnrm3llem2  47795
  Copyright terms: Public domain W3C validator