Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex6 Structured version   Visualization version   GIF version

Theorem 4atexlemex6 38566
Description: Lemma for 4atexlem7 38567. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatleme.l ≀ = (leβ€˜πΎ)
4thatleme.j ∨ = (joinβ€˜πΎ)
4thatleme.m ∧ = (meetβ€˜πΎ)
4thatleme.a 𝐴 = (Atomsβ€˜πΎ)
4thatleme.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
4atexlemex6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧, ∨   𝑧, ≀   𝑧, ∧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑆   𝑧,π‘Š
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)

Proof of Theorem 4atexlemex6
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
2 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
3 simp12 1205 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
4 simp13l 1289 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
5 simp32 1211 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑄)
6 4thatleme.l . . . . 5 ≀ = (leβ€˜πΎ)
7 4thatleme.j . . . . 5 ∨ = (joinβ€˜πΎ)
8 4thatleme.m . . . . 5 ∧ = (meetβ€˜πΎ)
9 4thatleme.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
10 4thatleme.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
116, 7, 8, 9, 10lhpat 38535 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1375 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ 𝐴)
13 simp2r 1201 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
14 simp12l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
15 simp33 1212 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
166, 7, 9atnlej1 37871 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 β‰  𝑃)
171, 13, 14, 4, 15, 16syl131anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑃)
1817necomd 3000 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑆)
196, 7, 8, 9, 10lhpat 38535 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑆)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴)
202, 3, 13, 18, 19syl112anc 1375 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴)
217, 9hlsupr2 37879 . . 3 ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴) β†’ βˆƒπ‘‘ ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))
221, 12, 20, 21syl3anc 1372 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘‘ ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))
23 simp111 1303 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
24 simp112 1304 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
25 simp113 1305 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
26 simp12r 1288 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ 𝑆 ∈ 𝐴)
27 simp2ll 1241 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
28273ad2ant1 1134 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ 𝑅 ∈ 𝐴)
29 simp2lr 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑅 ≀ π‘Š)
30293ad2ant1 1134 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ Β¬ 𝑅 ≀ π‘Š)
31 simp131 1309 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
3228, 30, 313jca 1129 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
33 3simpc 1151 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)))
34 simp132 1310 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ 𝑃 β‰  𝑄)
35 simp133 1311 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
36 biid 261 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
37 eqid 2737 . . . . . 6 ((𝑃 ∨ 𝑄) ∧ π‘Š) = ((𝑃 ∨ 𝑄) ∧ π‘Š)
38 eqid 2737 . . . . . 6 ((𝑃 ∨ 𝑆) ∧ π‘Š) = ((𝑃 ∨ 𝑆) ∧ π‘Š)
39 eqid 2737 . . . . . 6 ((𝑄 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆)) = ((𝑄 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆))
40 eqid 2737 . . . . . 6 ((𝑅 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆)) = ((𝑅 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆))
4136, 6, 7, 8, 9, 10, 37, 38, 39, 404atexlemex4 38565 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑄 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆)) = 𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
4236, 6, 7, 8, 9, 10, 37, 38, 394atexlemex2 38563 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑄 ∨ 𝑑) ∧ (𝑃 ∨ 𝑆)) β‰  𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
4341, 42pm2.61dane 3033 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
4423, 24, 25, 26, 32, 33, 34, 35, 43syl332anc 1402 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑑 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑)) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
4544rexlimdv3a 3157 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (βˆƒπ‘‘ ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ π‘Š) ∨ 𝑑) = (((𝑃 ∨ 𝑆) ∧ π‘Š) ∨ 𝑑) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))))
4622, 45mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆƒwrex 3074   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  lecple 17147  joincjn 18207  meetcmee 18208  Atomscatm 37754  HLchlt 37841  LHypclh 38476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990  df-lplanes 37991  df-lhyp 38480
This theorem is referenced by:  4atexlem7  38567
  Copyright terms: Public domain W3C validator