Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
2 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp12 1203 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simp13l 1287 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
5 | | simp32 1209 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) |
6 | | 4thatleme.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
7 | | 4thatleme.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
8 | | 4thatleme.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
9 | | 4thatleme.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | 4thatleme.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
11 | 6, 7, 8, 9, 10 | lhpat 38057 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
12 | 2, 3, 4, 5, 11 | syl112anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
13 | | simp2r 1199 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
14 | | simp12l 1285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
15 | | simp33 1210 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
16 | 6, 7, 9 | atnlej1 37393 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≠ 𝑃) |
17 | 1, 13, 14, 4, 15, 16 | syl131anc 1382 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑃) |
18 | 17 | necomd 2999 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑆) |
19 | 6, 7, 8, 9, 10 | lhpat 38057 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐴) |
20 | 2, 3, 13, 18, 19 | syl112anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐴) |
21 | 7, 9 | hlsupr2 37401 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐴) → ∃𝑡 ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) |
22 | 1, 12, 20, 21 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ∃𝑡 ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) |
23 | | simp111 1301 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | | simp112 1302 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | | simp113 1303 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
26 | | simp12r 1286 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → 𝑆 ∈ 𝐴) |
27 | | simp2ll 1239 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
28 | 27 | 3ad2ant1 1132 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → 𝑅 ∈ 𝐴) |
29 | | simp2lr 1240 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑅 ≤ 𝑊) |
30 | 29 | 3ad2ant1 1132 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → ¬ 𝑅 ≤ 𝑊) |
31 | | simp131 1307 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
32 | 28, 30, 31 | 3jca 1127 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
33 | | 3simpc 1149 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) |
34 | | simp132 1308 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → 𝑃 ≠ 𝑄) |
35 | | simp133 1309 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
36 | | biid 260 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
37 | | eqid 2738 |
. . . . . 6
⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
38 | | eqid 2738 |
. . . . . 6
⊢ ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
39 | | eqid 2738 |
. . . . . 6
⊢ ((𝑄 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) = ((𝑄 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) |
40 | | eqid 2738 |
. . . . . 6
⊢ ((𝑅 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) = ((𝑅 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) |
41 | 36, 6, 7, 8, 9, 10,
37, 38, 39, 40 | 4atexlemex4 38087 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑄 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
42 | 36, 6, 7, 8, 9, 10,
37, 38, 39 | 4atexlemex2 38085 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑄 ∨ 𝑡) ∧ (𝑃 ∨ 𝑆)) ≠ 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
43 | 41, 42 | pm2.61dane 3032 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
44 | 23, 24, 25, 26, 32, 33, 34, 35, 43 | syl332anc 1400 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑡 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡)) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
45 | 44 | rexlimdv3a 3215 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (∃𝑡 ∈ 𝐴 (((𝑃 ∨ 𝑄) ∧ 𝑊) ∨ 𝑡) = (((𝑃 ∨ 𝑆) ∧ 𝑊) ∨ 𝑡) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
46 | 22, 45 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |