Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex6 Structured version   Visualization version   GIF version

Theorem 4atexlemex6 40031
Description: Lemma for 4atexlem7 40032. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatleme.l = (le‘𝐾)
4thatleme.j = (join‘𝐾)
4thatleme.m = (meet‘𝐾)
4thatleme.a 𝐴 = (Atoms‘𝐾)
4thatleme.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlemex6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)

Proof of Theorem 4atexlemex6
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp11l 1284 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
2 simp11 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp13l 1288 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
5 simp32 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
6 4thatleme.l . . . . 5 = (le‘𝐾)
7 4thatleme.j . . . . 5 = (join‘𝐾)
8 4thatleme.m . . . . 5 = (meet‘𝐾)
9 4thatleme.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 4thatleme.h . . . . 5 𝐻 = (LHyp‘𝐾)
116, 7, 8, 9, 10lhpat 40000 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
13 simp2r 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
14 simp12l 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
15 simp33 1211 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
166, 7, 9atnlej1 39336 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
171, 13, 14, 4, 15, 16syl131anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑃)
1817necomd 3002 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑆)
196, 7, 8, 9, 10lhpat 40000 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴𝑃𝑆)) → ((𝑃 𝑆) 𝑊) ∈ 𝐴)
202, 3, 13, 18, 19syl112anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑆) 𝑊) ∈ 𝐴)
217, 9hlsupr2 39344 . . 3 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴 ∧ ((𝑃 𝑆) 𝑊) ∈ 𝐴) → ∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))
221, 12, 20, 21syl3anc 1371 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))
23 simp111 1302 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simp112 1303 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
25 simp113 1304 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
26 simp12r 1287 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑆𝐴)
27 simp2ll 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
28273ad2ant1 1133 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑅𝐴)
29 simp2lr 1241 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 𝑊)
30293ad2ant1 1133 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ¬ 𝑅 𝑊)
31 simp131 1308 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑃 𝑅) = (𝑄 𝑅))
3228, 30, 313jca 1128 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
33 3simpc 1150 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)))
34 simp132 1309 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑃𝑄)
35 simp133 1310 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ¬ 𝑆 (𝑃 𝑄))
36 biid 261 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
37 eqid 2740 . . . . . 6 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
38 eqid 2740 . . . . . 6 ((𝑃 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊)
39 eqid 2740 . . . . . 6 ((𝑄 𝑡) (𝑃 𝑆)) = ((𝑄 𝑡) (𝑃 𝑆))
40 eqid 2740 . . . . . 6 ((𝑅 𝑡) (𝑃 𝑆)) = ((𝑅 𝑡) (𝑃 𝑆))
4136, 6, 7, 8, 9, 10, 37, 38, 39, 404atexlemex4 40030 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ ((𝑄 𝑡) (𝑃 𝑆)) = 𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4236, 6, 7, 8, 9, 10, 37, 38, 394atexlemex2 40028 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ ((𝑄 𝑡) (𝑃 𝑆)) ≠ 𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4341, 42pm2.61dane 3035 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4423, 24, 25, 26, 32, 33, 34, 35, 43syl332anc 1401 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4544rexlimdv3a 3165 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
4622, 45mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lhyp 39945
This theorem is referenced by:  4atexlem7  40032
  Copyright terms: Public domain W3C validator