MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Visualization version   GIF version

Theorem simp112 1304
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1205 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axcontlem4  28894  ps-2b  39476  llncvrlpln2  39551  4atlem11b  39602  4atlem12b  39605  2lnat  39778  cdlemblem  39787  4atexlemex6  40068  cdleme24  40346  cdleme26ee  40354  cdlemg2idN  40590  cdlemg31c  40693  cdlemk26-3  40900  dihglblem2N  41288  0ellimcdiv  45647
  Copyright terms: Public domain W3C validator