MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Visualization version   GIF version

Theorem simp112 1301
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1202 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant1 1131 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  axcontlem4  27238  ps-2b  37423  llncvrlpln2  37498  4atlem11b  37549  4atlem12b  37552  2lnat  37725  cdlemblem  37734  4atexlemex6  38015  cdleme24  38293  cdleme26ee  38301  cdlemg2idN  38537  cdlemg31c  38640  cdlemk26-3  38847  dihglblem2N  39235  0ellimcdiv  43080
  Copyright terms: Public domain W3C validator