Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Structured version   Visualization version   GIF version

Theorem 2lnat 36912
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b 𝐵 = (Base‘𝐾)
2lnat.m = (meet‘𝐾)
2lnat.z 0 = (0.‘𝐾)
2lnat.a 𝐴 = (Atoms‘𝐾)
2lnat.n 𝑁 = (Lines‘𝐾)
2lnat.f 𝐹 = (pmap‘𝐾)
Assertion
Ref Expression
2lnat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2lnat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp11 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ HL)
2 hlatl 36488 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ AtLat)
41hllatd 36492 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ Lat)
5 simp12 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋𝐵)
6 simp13 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌𝐵)
7 2lnat.b . . . . . 6 𝐵 = (Base‘𝐾)
8 2lnat.m . . . . . 6 = (meet‘𝐾)
97, 8latmcl 17654 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
104, 5, 6, 9syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐵)
11 simp3r 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ≠ 0 )
12 eqid 2819 . . . . 5 (le‘𝐾) = (le‘𝐾)
13 2lnat.z . . . . 5 0 = (0.‘𝐾)
14 2lnat.a . . . . 5 𝐴 = (Atoms‘𝐾)
157, 12, 13, 14atlex 36444 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ≠ 0 ) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
163, 10, 11, 15syl3anc 1366 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
17 simp13l 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑌)
18 simp11 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵))
19 simp12l 1281 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑋) ∈ 𝑁)
20 simp12r 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑌) ∈ 𝑁)
21 2lnat.n . . . . . . . . . . 11 𝑁 = (Lines‘𝐾)
22 2lnat.f . . . . . . . . . . 11 𝐹 = (pmap‘𝐾)
237, 12, 21, 22lncmp 36911 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
2418, 19, 20, 23syl12anc 834 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
25 simp111 1297 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ HL)
2625hllatd 36492 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Lat)
27 simp112 1298 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝐵)
28 simp113 1299 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌𝐵)
297, 12, 8latleeqm1 17681 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3026, 27, 28, 29syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3124, 30bitr3d 283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 = 𝑌 ↔ (𝑋 𝑌) = 𝑋))
3231necon3bid 3058 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
3317, 32mpbid 234 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ≠ 𝑋)
34 simp3 1133 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌))
357, 12, 8latmle1 17678 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
3626, 27, 28, 35syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌)(le‘𝐾)𝑋)
37 hlpos 36494 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3825, 37syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Poset)
397, 14atbase 36417 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
40393ad2ant2 1129 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐵)
4126, 27, 28, 9syl3anc 1366 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝐵)
42 simp2 1132 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐴)
437, 12, 26, 40, 41, 27, 34, 36lattrd 17660 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)𝑋)
44 eqid 2819 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
457, 12, 44, 14, 21, 22lncvrat 36910 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) ∧ ((𝐹𝑋) ∈ 𝑁𝑝(le‘𝐾)𝑋)) → 𝑝( ⋖ ‘𝐾)𝑋)
4625, 27, 42, 19, 43, 45syl32anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
477, 12, 44cvrnbtwn4 36407 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
4838, 40, 27, 41, 46, 47syl131anc 1378 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
4934, 36, 48mpbi2and 710 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋))
50 neor 3106 . . . . . . . 8 ((𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋) ↔ (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5149, 50sylib 220 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5251necon1d 3036 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑋 𝑌) ≠ 𝑋𝑝 = (𝑋 𝑌)))
5333, 52mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 = (𝑋 𝑌))
54533exp 1114 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑝𝐴 → (𝑝(le‘𝐾)(𝑋 𝑌) → 𝑝 = (𝑋 𝑌))))
5554reximdvai 3270 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌)))
5616, 55mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
57 risset 3265 . 2 ((𝑋 𝑌) ∈ 𝐴 ↔ ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
5856, 57sylibr 236 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  Posetcpo 17542  meetcmee 17547  0.cp0 17639  Latclat 17647  ccvr 36390  Atomscatm 36391  AtLatcal 36392  HLchlt 36478  Linesclines 36622  pmapcpmap 36625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-lines 36629  df-pmap 36632
This theorem is referenced by:  cdleme3h  37363  cdleme7ga  37376
  Copyright terms: Public domain W3C validator