Proof of Theorem cdlemblem
Step | Hyp | Ref
| Expression |
1 | | simp132 1308 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ¬ 𝑃 ≤ 𝑋) |
2 | | simp111 1301 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝐾 ∈ HL) |
3 | | simp2l 1198 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 ∈ 𝐴) |
4 | | simp12l 1285 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑋 ∈ 𝐵) |
5 | 2, 3, 4 | 3jca 1127 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝐾 ∈ HL ∧ 𝑢 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
6 | | simp2rr 1242 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 < 𝑋) |
7 | | cdlemb.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemblem.s |
. . . . . . 7
⊢ < =
(lt‘𝐾) |
9 | 7, 8 | pltle 18051 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑢 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑢 < 𝑋 → 𝑢 ≤ 𝑋)) |
10 | 5, 6, 9 | sylc 65 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 ≤ 𝑋) |
11 | 2 | hllatd 37378 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝐾 ∈ Lat) |
12 | | simp3l 1200 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑟 ∈ 𝐴) |
13 | | cdlemb.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
14 | | cdlemb.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
15 | 13, 14 | atbase 37303 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵) |
16 | 12, 15 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑟 ∈ 𝐵) |
17 | 13, 14 | atbase 37303 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵) |
18 | 3, 17 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 ∈ 𝐵) |
19 | | cdlemb.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
20 | 13, 7, 19 | latjle12 18168 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑟 ≤ 𝑋 ∧ 𝑢 ≤ 𝑋) ↔ (𝑟 ∨ 𝑢) ≤ 𝑋)) |
21 | 11, 16, 18, 4, 20 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑟 ≤ 𝑋 ∧ 𝑢 ≤ 𝑋) ↔ (𝑟 ∨ 𝑢) ≤ 𝑋)) |
22 | 21 | biimpd 228 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑟 ≤ 𝑋 ∧ 𝑢 ≤ 𝑋) → (𝑟 ∨ 𝑢) ≤ 𝑋)) |
23 | 10, 22 | mpan2d 691 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ 𝑋 → (𝑟 ∨ 𝑢) ≤ 𝑋)) |
24 | | simp112 1302 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑃 ∈ 𝐴) |
25 | 12, 24, 3 | 3jca 1127 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) |
26 | | simp3r2 1281 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑟 ≠ 𝑢) |
27 | 2, 25, 26 | 3jca 1127 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) ∧ 𝑟 ≠ 𝑢)) |
28 | | simp3r3 1282 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑟 ≤ (𝑃 ∨ 𝑢)) |
29 | 7, 19, 14 | hlatexch2 37410 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) ∧ 𝑟 ≠ 𝑢) → (𝑟 ≤ (𝑃 ∨ 𝑢) → 𝑃 ≤ (𝑟 ∨ 𝑢))) |
30 | 27, 28, 29 | sylc 65 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑃 ≤ (𝑟 ∨ 𝑢)) |
31 | 13, 14 | atbase 37303 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
32 | 24, 31 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑃 ∈ 𝐵) |
33 | 13, 19 | latjcl 18157 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) → (𝑟 ∨ 𝑢) ∈ 𝐵) |
34 | 11, 16, 18, 33 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ∨ 𝑢) ∈ 𝐵) |
35 | 13, 7 | lattr 18162 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑟 ∨ 𝑢) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ≤ (𝑟 ∨ 𝑢) ∧ (𝑟 ∨ 𝑢) ≤ 𝑋) → 𝑃 ≤ 𝑋)) |
36 | 11, 32, 34, 4, 35 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑃 ≤ (𝑟 ∨ 𝑢) ∧ (𝑟 ∨ 𝑢) ≤ 𝑋) → 𝑃 ≤ 𝑋)) |
37 | 30, 36 | mpand 692 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑟 ∨ 𝑢) ≤ 𝑋 → 𝑃 ≤ 𝑋)) |
38 | 23, 37 | syld 47 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ 𝑋 → 𝑃 ≤ 𝑋)) |
39 | 1, 38 | mtod 197 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ¬ 𝑟 ≤ 𝑋) |
40 | | simp2rl 1241 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 ≠ 𝑉) |
41 | | simp113 1303 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑄 ∈ 𝐴) |
42 | | simp3r1 1280 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑟 ≠ 𝑃) |
43 | 7, 19, 14 | hlatexchb1 37407 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑟 ≠ 𝑃) → (𝑟 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑄))) |
44 | 2, 12, 41, 24, 42, 43 | syl131anc 1382 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑄))) |
45 | 12, 3, 24 | 3jca 1127 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) |
46 | 2, 45, 42 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑟 ≠ 𝑃)) |
47 | 7, 19, 14 | hlatexch1 37409 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑟 ≠ 𝑃) → (𝑟 ≤ (𝑃 ∨ 𝑢) → 𝑢 ≤ (𝑃 ∨ 𝑟))) |
48 | 46, 28, 47 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑢 ≤ (𝑃 ∨ 𝑟)) |
49 | | breq2 5078 |
. . . . . . . . 9
⊢ ((𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑄) → (𝑢 ≤ (𝑃 ∨ 𝑟) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
50 | 48, 49 | syl5ibcom 244 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑄) → 𝑢 ≤ (𝑃 ∨ 𝑄))) |
51 | 44, 50 | sylbid 239 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ (𝑃 ∨ 𝑄) → 𝑢 ≤ (𝑃 ∨ 𝑄))) |
52 | 51, 10 | jctird 527 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ (𝑃 ∨ 𝑄) → (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑋))) |
53 | 13, 14 | atbase 37303 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
54 | 41, 53 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑄 ∈ 𝐵) |
55 | 13, 19 | latjcl 18157 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
56 | 11, 32, 54, 55 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
57 | | cdlemblem.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
58 | 13, 7, 57 | latlem12 18184 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑢 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑋) ↔ 𝑢 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑋))) |
59 | 11, 18, 56, 4, 58 | syl13anc 1371 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑋) ↔ 𝑢 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑋))) |
60 | | cdlemblem.v |
. . . . . . . 8
⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑋) |
61 | 60 | breq2i 5082 |
. . . . . . 7
⊢ (𝑢 ≤ 𝑉 ↔ 𝑢 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑋)) |
62 | 59, 61 | bitr4di 289 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑋) ↔ 𝑢 ≤ 𝑉)) |
63 | 52, 62 | sylibd 238 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ (𝑃 ∨ 𝑄) → 𝑢 ≤ 𝑉)) |
64 | | hlatl 37374 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
65 | 2, 64 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝐾 ∈ AtLat) |
66 | | simp12r 1286 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑃 ≠ 𝑄) |
67 | | simp131 1307 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑋𝐶 1 ) |
68 | | cdlemb.u |
. . . . . . . . 9
⊢ 1 =
(1.‘𝐾) |
69 | | cdlemb.c |
. . . . . . . . 9
⊢ 𝐶 = ( ⋖ ‘𝐾) |
70 | 13, 7, 19, 57, 68, 69, 14 | 1cvrat 37490 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) |
71 | 2, 24, 41, 4, 66, 67, 1, 70 | syl133anc 1392 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) |
72 | 60, 71 | eqeltrid 2843 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → 𝑉 ∈ 𝐴) |
73 | 7, 14 | atcmp 37325 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑢 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑢 ≤ 𝑉 ↔ 𝑢 = 𝑉)) |
74 | 65, 3, 72, 73 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑢 ≤ 𝑉 ↔ 𝑢 = 𝑉)) |
75 | 63, 74 | sylibd 238 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑟 ≤ (𝑃 ∨ 𝑄) → 𝑢 = 𝑉)) |
76 | 75 | necon3ad 2956 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (𝑢 ≠ 𝑉 → ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
77 | 40, 76 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)) |
78 | 39, 77 | jca 512 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |