Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemblem Structured version   Visualization version   GIF version

Theorem cdlemblem 39177
Description: Lemma for cdlemb 39178. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐡 = (Baseβ€˜πΎ)
cdlemb.l ≀ = (leβ€˜πΎ)
cdlemb.j ∨ = (joinβ€˜πΎ)
cdlemb.u 1 = (1.β€˜πΎ)
cdlemb.c 𝐢 = ( β‹– β€˜πΎ)
cdlemb.a 𝐴 = (Atomsβ€˜πΎ)
cdlemblem.s < = (ltβ€˜πΎ)
cdlemblem.m ∧ = (meetβ€˜πΎ)
cdlemblem.v 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑋)
Assertion
Ref Expression
cdlemblem ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))

Proof of Theorem cdlemblem
StepHypRef Expression
1 simp132 1306 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ Β¬ 𝑃 ≀ 𝑋)
2 simp111 1299 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝐾 ∈ HL)
3 simp2l 1196 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 ∈ 𝐴)
4 simp12l 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑋 ∈ 𝐡)
52, 3, 43jca 1125 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝐾 ∈ HL ∧ 𝑒 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡))
6 simp2rr 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 < 𝑋)
7 cdlemb.l . . . . . . 7 ≀ = (leβ€˜πΎ)
8 cdlemblem.s . . . . . . 7 < = (ltβ€˜πΎ)
97, 8pltle 18298 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑒 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑒 < 𝑋 β†’ 𝑒 ≀ 𝑋))
105, 6, 9sylc 65 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 ≀ 𝑋)
112hllatd 38747 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝐾 ∈ Lat)
12 simp3l 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ π‘Ÿ ∈ 𝐴)
13 cdlemb.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
14 cdlemb.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
1513, 14atbase 38672 . . . . . . . 8 (π‘Ÿ ∈ 𝐴 β†’ π‘Ÿ ∈ 𝐡)
1612, 15syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ π‘Ÿ ∈ 𝐡)
1713, 14atbase 38672 . . . . . . . 8 (𝑒 ∈ 𝐴 β†’ 𝑒 ∈ 𝐡)
183, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 ∈ 𝐡)
19 cdlemb.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
2013, 7, 19latjle12 18415 . . . . . . 7 ((𝐾 ∈ Lat ∧ (π‘Ÿ ∈ 𝐡 ∧ 𝑒 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((π‘Ÿ ≀ 𝑋 ∧ 𝑒 ≀ 𝑋) ↔ (π‘Ÿ ∨ 𝑒) ≀ 𝑋))
2111, 16, 18, 4, 20syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((π‘Ÿ ≀ 𝑋 ∧ 𝑒 ≀ 𝑋) ↔ (π‘Ÿ ∨ 𝑒) ≀ 𝑋))
2221biimpd 228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((π‘Ÿ ≀ 𝑋 ∧ 𝑒 ≀ 𝑋) β†’ (π‘Ÿ ∨ 𝑒) ≀ 𝑋))
2310, 22mpan2d 691 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ 𝑋 β†’ (π‘Ÿ ∨ 𝑒) ≀ 𝑋))
24 simp112 1300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑃 ∈ 𝐴)
2512, 24, 33jca 1125 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴))
26 simp3r2 1279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ π‘Ÿ β‰  𝑒)
272, 25, 263jca 1125 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑒))
28 simp3r3 1280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑒))
297, 19, 14hlatexch2 38780 . . . . . 6 ((𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑒) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑒) β†’ 𝑃 ≀ (π‘Ÿ ∨ 𝑒)))
3027, 28, 29sylc 65 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑃 ≀ (π‘Ÿ ∨ 𝑒))
3113, 14atbase 38672 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
3224, 31syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑃 ∈ 𝐡)
3313, 19latjcl 18404 . . . . . . 7 ((𝐾 ∈ Lat ∧ π‘Ÿ ∈ 𝐡 ∧ 𝑒 ∈ 𝐡) β†’ (π‘Ÿ ∨ 𝑒) ∈ 𝐡)
3411, 16, 18, 33syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ∨ 𝑒) ∈ 𝐡)
3513, 7lattr 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ (π‘Ÿ ∨ 𝑒) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑃 ≀ (π‘Ÿ ∨ 𝑒) ∧ (π‘Ÿ ∨ 𝑒) ≀ 𝑋) β†’ 𝑃 ≀ 𝑋))
3611, 32, 34, 4, 35syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((𝑃 ≀ (π‘Ÿ ∨ 𝑒) ∧ (π‘Ÿ ∨ 𝑒) ≀ 𝑋) β†’ 𝑃 ≀ 𝑋))
3730, 36mpand 692 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((π‘Ÿ ∨ 𝑒) ≀ 𝑋 β†’ 𝑃 ≀ 𝑋))
3823, 37syld 47 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ 𝑋 β†’ 𝑃 ≀ 𝑋))
391, 38mtod 197 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ Β¬ π‘Ÿ ≀ 𝑋)
40 simp2rl 1239 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 β‰  𝑉)
41 simp113 1301 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑄 ∈ 𝐴)
42 simp3r1 1278 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ π‘Ÿ β‰  𝑃)
437, 19, 14hlatexchb1 38777 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑃) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ π‘Ÿ) = (𝑃 ∨ 𝑄)))
442, 12, 41, 24, 42, 43syl131anc 1380 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ π‘Ÿ) = (𝑃 ∨ 𝑄)))
4512, 3, 243jca 1125 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
462, 45, 423jca 1125 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑃))
477, 19, 14hlatexch1 38779 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑃) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑒) β†’ 𝑒 ≀ (𝑃 ∨ π‘Ÿ)))
4846, 28, 47sylc 65 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑒 ≀ (𝑃 ∨ π‘Ÿ))
49 breq2 5145 . . . . . . . . 9 ((𝑃 ∨ π‘Ÿ) = (𝑃 ∨ 𝑄) β†’ (𝑒 ≀ (𝑃 ∨ π‘Ÿ) ↔ 𝑒 ≀ (𝑃 ∨ 𝑄)))
5048, 49syl5ibcom 244 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((𝑃 ∨ π‘Ÿ) = (𝑃 ∨ 𝑄) β†’ 𝑒 ≀ (𝑃 ∨ 𝑄)))
5144, 50sylbid 239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ 𝑒 ≀ (𝑃 ∨ 𝑄)))
5251, 10jctird 526 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ (𝑒 ≀ (𝑃 ∨ 𝑄) ∧ 𝑒 ≀ 𝑋)))
5313, 14atbase 38672 . . . . . . . . . 10 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
5441, 53syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑄 ∈ 𝐡)
5513, 19latjcl 18404 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
5611, 32, 54, 55syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
57 cdlemblem.m . . . . . . . . 9 ∧ = (meetβ€˜πΎ)
5813, 7, 57latlem12 18431 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑒 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑒 ≀ (𝑃 ∨ 𝑄) ∧ 𝑒 ≀ 𝑋) ↔ 𝑒 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋)))
5911, 18, 56, 4, 58syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((𝑒 ≀ (𝑃 ∨ 𝑄) ∧ 𝑒 ≀ 𝑋) ↔ 𝑒 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋)))
60 cdlemblem.v . . . . . . . 8 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑋)
6160breq2i 5149 . . . . . . 7 (𝑒 ≀ 𝑉 ↔ 𝑒 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋))
6259, 61bitr4di 289 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((𝑒 ≀ (𝑃 ∨ 𝑄) ∧ 𝑒 ≀ 𝑋) ↔ 𝑒 ≀ 𝑉))
6352, 62sylibd 238 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ 𝑒 ≀ 𝑉))
64 hlatl 38743 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
652, 64syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝐾 ∈ AtLat)
66 simp12r 1284 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑃 β‰  𝑄)
67 simp131 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑋𝐢 1 )
68 cdlemb.u . . . . . . . . 9 1 = (1.β€˜πΎ)
69 cdlemb.c . . . . . . . . 9 𝐢 = ( β‹– β€˜πΎ)
7013, 7, 19, 57, 68, 69, 141cvrat 38860 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴)
712, 24, 41, 4, 66, 67, 1, 70syl133anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴)
7260, 71eqeltrid 2831 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ 𝑉 ∈ 𝐴)
737, 14atcmp 38694 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑒 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (𝑒 ≀ 𝑉 ↔ 𝑒 = 𝑉))
7465, 3, 72, 73syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝑒 ≀ 𝑉 ↔ 𝑒 = 𝑉))
7563, 74sylibd 238 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ 𝑒 = 𝑉))
7675necon3ad 2947 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (𝑒 β‰  𝑉 β†’ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
7740, 76mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))
7839, 77jca 511 1 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  𝑉 ∧ 𝑒 < 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  ltcplt 18273  joincjn 18276  meetcmee 18277  1.cp1 18389  Latclat 18396   β‹– ccvr 38645  Atomscatm 38646  AtLatcal 38647  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734
This theorem is referenced by:  cdlemb  39178
  Copyright terms: Public domain W3C validator