Proof of Theorem cdleme22eALTN
Step | Hyp | Ref
| Expression |
1 | | cdleme22eALT.n |
. . 3
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊))) |
2 | | simp11 1201 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝐾 ∈ HL) |
3 | 2 | hllatd 37305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝐾 ∈ Lat) |
4 | | simp21l 1288 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑃 ∈ 𝐴) |
5 | | simp22l 1290 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑄 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | cdleme22.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | cdleme22.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 2, 4, 5, 9 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | | simp12 1202 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑊 ∈ 𝐻) |
12 | | simp3ll 1242 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑦 ∈ 𝐴) |
13 | 12 | 3ad2ant3 1133 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑦 ∈ 𝐴) |
14 | | cdleme22.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
15 | | cdleme22.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
16 | | cdleme22.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdleme22eALT.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | | cdleme22eALT.f |
. . . . . . 7
⊢ 𝐹 = ((𝑦 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑦) ∧ 𝑊))) |
19 | 14, 7, 15, 8, 16, 17, 18, 6 | cdleme1b 38167 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
20 | 2, 11, 4, 5, 13, 19 | syl23anc 1375 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝐹 ∈ (Base‘𝐾)) |
21 | | simp31 1207 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑆 ∈ 𝐴) |
22 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑆 ∨ 𝑦) ∈ (Base‘𝐾)) |
23 | 2, 21, 13, 22 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑆 ∨ 𝑦) ∈ (Base‘𝐾)) |
24 | 6, 16 | lhpbase 37939 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
25 | 11, 24 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑊 ∈ (Base‘𝐾)) |
26 | 6, 15 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑦) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 ∨ 𝑦) ∧ 𝑊) ∈ (Base‘𝐾)) |
27 | 3, 23, 25, 26 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑆 ∨ 𝑦) ∧ 𝑊) ∈ (Base‘𝐾)) |
28 | 6, 7 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 ∨ 𝑦) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊)) ∈ (Base‘𝐾)) |
29 | 3, 20, 27, 28 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊)) ∈ (Base‘𝐾)) |
30 | 6, 14, 15 | latmle1 18097 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊))) ≤ (𝑃 ∨ 𝑄)) |
31 | 3, 10, 29, 30 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊))) ≤ (𝑃 ∨ 𝑄)) |
32 | 1, 31 | eqbrtrid 5105 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑁 ≤ (𝑃 ∨ 𝑄)) |
33 | | simp21 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
34 | | simp13 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑇 ∈ 𝐴) |
35 | | simp321 1321 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑉 ∈ 𝐴) |
36 | | simp322 1322 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑉 ≤ 𝑊) |
37 | 35, 36 | jca 511 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
38 | | simp23 1206 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑃 ≠ 𝑄) |
39 | | simp323 1323 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) |
40 | 14, 7, 15, 8, 16, 17 | cdleme22a 38281 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))) → 𝑉 = 𝑈) |
41 | 2, 11, 33, 5, 34, 37, 38, 39, 40 | syl233anc 1397 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑉 = 𝑈) |
42 | 41 | oveq2d 7271 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑂 ∨ 𝑉) = (𝑂 ∨ 𝑈)) |
43 | | cdleme22eALT.o |
. . . . 5
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
44 | 43 | oveq1i 7265 |
. . . 4
⊢ (𝑂 ∨ 𝑈) = (((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) |
45 | | simp21r 1289 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ¬ 𝑃 ≤ 𝑊) |
46 | 14, 7, 15, 8, 16, 17 | cdleme0a 38152 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
47 | 2, 11, 4, 45, 5, 38, 46 | syl222anc 1384 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑈 ∈ 𝐴) |
48 | | simp3rl 1244 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑧 ∈ 𝐴) |
49 | 48 | 3ad2ant3 1133 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑧 ∈ 𝐴) |
50 | | cdleme22eALT.g |
. . . . . . . 8
⊢ 𝐺 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
51 | 14, 7, 15, 8, 16, 17, 50, 6 | cdleme1b 38167 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐺 ∈ (Base‘𝐾)) |
52 | 2, 11, 4, 5, 49, 51 | syl23anc 1375 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝐺 ∈ (Base‘𝐾)) |
53 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑇 ∨ 𝑧) ∈ (Base‘𝐾)) |
54 | 2, 34, 49, 53 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑧) ∈ (Base‘𝐾)) |
55 | 6, 15 | latmcl 18073 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∨ 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑇 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) |
56 | 3, 54, 25, 55 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) |
57 | 6, 7 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝐺 ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) |
58 | 3, 52, 56, 57 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) |
59 | 14, 7, 15, 8, 16, 17 | cdlemeulpq 38161 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
60 | 2, 11, 4, 5, 59 | syl22anc 835 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
61 | 6, 14, 7, 15, 8 | atmod2i1 37802 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑈 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 ≤ (𝑃 ∨ 𝑄)) → (((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) = ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
62 | 2, 47, 10, 58, 60, 61 | syl131anc 1381 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) = ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
63 | 44, 62 | eqtr2id 2792 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) = (𝑂 ∨ 𝑈)) |
64 | 41 | oveq2d 7271 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑉) = (𝑇 ∨ 𝑈)) |
65 | 39, 64 | eqtr3d 2780 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑄) = (𝑇 ∨ 𝑈)) |
66 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
67 | 2, 34, 47, 66 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
68 | 6, 8 | atbase 37230 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (Base‘𝐾)) |
69 | 49, 68 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑧 ∈ (Base‘𝐾)) |
70 | 6, 14, 7 | latlej1 18081 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑇 ∨ 𝑈) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑧)) |
71 | 3, 67, 69, 70 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑈) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑧)) |
72 | 7, 8 | hlatj32 37313 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ 𝑧) = ((𝑇 ∨ 𝑧) ∨ 𝑈)) |
73 | 2, 34, 47, 49, 72 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑈) ∨ 𝑧) = ((𝑇 ∨ 𝑧) ∨ 𝑈)) |
74 | 6, 8 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
75 | 47, 74 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑈 ∈ (Base‘𝐾)) |
76 | 6, 7 | latj32 18118 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾))) → ((𝑧 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
77 | 3, 69, 75, 56, 76 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑧 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
78 | 6, 7 | latj32 18118 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) = ((𝐺 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
79 | 3, 52, 56, 75, 78 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) = ((𝐺 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
80 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑃 ∨ 𝑧) ∈ (Base‘𝐾)) |
81 | 2, 4, 49, 80 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑧) ∈ (Base‘𝐾)) |
82 | 14, 7, 8 | hlatlej1 37316 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑧)) |
83 | 2, 4, 49, 82 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑃 ≤ (𝑃 ∨ 𝑧)) |
84 | 6, 14, 7, 15, 8 | atmod3i1 37805 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑧)) → (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ 𝑊))) |
85 | 2, 4, 81, 25, 83, 84 | syl131anc 1381 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ 𝑊))) |
86 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1.‘𝐾) =
(1.‘𝐾) |
87 | 14, 7, 86, 8, 16 | lhpjat2 37962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
88 | 2, 11, 33, 87 | syl21anc 834 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
89 | 88 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ 𝑊)) = ((𝑃 ∨ 𝑧) ∧ (1.‘𝐾))) |
90 | | hlol 37302 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
91 | 2, 90 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝐾 ∈ OL) |
92 | 6, 15, 86 | olm11 37168 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑧) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑧) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑧)) |
93 | 91, 81, 92 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑧) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑧)) |
94 | 85, 89, 93 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = (𝑃 ∨ 𝑧)) |
95 | 94 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑄) = ((𝑃 ∨ 𝑧) ∨ 𝑄)) |
96 | 17 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑄 ∨ 𝑈) = (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
97 | 14, 7, 8 | hlatlej2 37317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
98 | 2, 4, 5, 97 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
99 | 6, 14, 7, 15, 8 | atmod3i1 37805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝑊))) |
100 | 2, 5, 10, 25, 98, 99 | syl131anc 1381 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝑊))) |
101 | 96, 100 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∨ 𝑈) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝑊))) |
102 | | simp22 1205 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
103 | 14, 7, 86, 8, 16 | lhpjat2 37962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∨ 𝑊) = (1.‘𝐾)) |
104 | 2, 11, 102, 103 | syl21anc 834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∨ 𝑊) = (1.‘𝐾)) |
105 | 104 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾))) |
106 | 6, 15, 86 | olm11 37168 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) |
107 | 91, 10, 106 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) |
108 | 101, 105,
107 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
109 | 108 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑄 ∨ 𝑈) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
110 | 6, 8 | atbase 37230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
111 | 4, 110 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑃 ∈ (Base‘𝐾)) |
112 | 6, 15 | latmcl 18073 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) |
113 | 3, 81, 25, 112 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) |
114 | 6, 8 | atbase 37230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
115 | 5, 114 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑄 ∈ (Base‘𝐾)) |
116 | 6, 7 | latj32 18118 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
117 | 3, 111, 113, 115, 116 | syl13anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
118 | 109, 117 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑄 ∨ 𝑈) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑄)) |
119 | 7, 8 | hlatj32 37313 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑃 ∨ 𝑧) ∨ 𝑄)) |
120 | 2, 4, 5, 49, 119 | syl13anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑃 ∨ 𝑧) ∨ 𝑄)) |
121 | 95, 118, 120 | 3eqtr4rd 2789 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑄 ∨ 𝑈) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
122 | 6, 7 | latj32 18118 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑈) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
123 | 3, 115, 75, 113, 122 | syl13anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑄 ∨ 𝑈) ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
124 | 121, 123 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
125 | 124 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑧 ∨ 𝑈) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = ((𝑧 ∨ 𝑈) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
126 | 6, 7 | latjcl 18072 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Base‘𝐾)) |
127 | 3, 10, 69, 126 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Base‘𝐾)) |
128 | 6, 14, 7 | latlej2 18082 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) |
129 | 3, 10, 69, 128 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑧 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) |
130 | 6, 14, 7, 15, 8 | atmod1i1 37798 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑧 ∈ 𝐴 ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Base‘𝐾)) ∧ 𝑧 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) → (𝑧 ∨ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = ((𝑧 ∨ 𝑈) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) |
131 | 2, 49, 75, 127, 129, 130 | syl131anc 1381 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∨ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = ((𝑧 ∨ 𝑈) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) |
132 | 50 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∨ 𝑈) = (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) |
133 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑧 ∨ 𝑈) ∈ (Base‘𝐾)) |
134 | 2, 49, 47, 133 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∨ 𝑈) ∈ (Base‘𝐾)) |
135 | 6, 7 | latjcl 18072 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑧) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) |
136 | 3, 115, 113, 135 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) |
137 | 14, 7, 8 | hlatlej2 37317 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ (𝑧 ∨ 𝑈)) |
138 | 2, 49, 47, 137 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑈 ≤ (𝑧 ∨ 𝑈)) |
139 | 6, 14, 7, 15, 8 | atmod2i1 37802 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑈 ∈ 𝐴 ∧ (𝑧 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 ≤ (𝑧 ∨ 𝑈)) → (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) = ((𝑧 ∨ 𝑈) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
140 | 2, 47, 134, 136, 138, 139 | syl131anc 1381 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ 𝑈) = ((𝑧 ∨ 𝑈) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
141 | 132, 140 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝐺 ∨ 𝑈) = ((𝑧 ∨ 𝑈) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈))) |
142 | 125, 131,
141 | 3eqtr4rd 2789 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝐺 ∨ 𝑈) = (𝑧 ∨ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)))) |
143 | 6, 14, 7 | latlej1 18081 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) |
144 | 3, 10, 69, 143 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) |
145 | 6, 14, 3, 75, 10, 127, 60, 144 | lattrd 18079 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑈 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧)) |
146 | 6, 14, 15 | latleeqm1 18100 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Base‘𝐾)) → (𝑈 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧) ↔ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = 𝑈)) |
147 | 3, 75, 127, 146 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑈 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑧) ↔ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = 𝑈)) |
148 | 145, 147 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = 𝑈) |
149 | 148 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∨ (𝑈 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = (𝑧 ∨ 𝑈)) |
150 | 142, 149 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝐺 ∨ 𝑈) = (𝑧 ∨ 𝑈)) |
151 | 150 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝐺 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) = ((𝑧 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
152 | 79, 151 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) = ((𝑧 ∨ 𝑈) ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
153 | 14, 7, 8 | hlatlej2 37317 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ (𝑇 ∨ 𝑧)) |
154 | 2, 34, 49, 153 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑧 ≤ (𝑇 ∨ 𝑧)) |
155 | 6, 14, 7, 15, 8 | atmod3i1 37805 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑧 ∈ 𝐴 ∧ (𝑇 ∨ 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑧 ≤ (𝑇 ∨ 𝑧)) → (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) = ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ 𝑊))) |
156 | 2, 49, 54, 25, 154, 155 | syl131anc 1381 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) = ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ 𝑊))) |
157 | | simp33r 1299 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)) |
158 | 14, 7, 86, 8, 16 | lhpjat2 37962 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)) → (𝑧 ∨ 𝑊) = (1.‘𝐾)) |
159 | 2, 11, 157, 158 | syl21anc 834 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑧 ∨ 𝑊) = (1.‘𝐾)) |
160 | 159 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ 𝑊)) = ((𝑇 ∨ 𝑧) ∧ (1.‘𝐾))) |
161 | 6, 15, 86 | olm11 37168 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ (𝑇 ∨ 𝑧) ∈ (Base‘𝐾)) → ((𝑇 ∨ 𝑧) ∧ (1.‘𝐾)) = (𝑇 ∨ 𝑧)) |
162 | 91, 54, 161 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑧) ∧ (1.‘𝐾)) = (𝑇 ∨ 𝑧)) |
163 | 156, 160,
162 | 3eqtrrd 2783 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑧) = (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
164 | 163 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑧) ∨ 𝑈) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
165 | 77, 152, 164 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑧) ∨ 𝑈) = ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
166 | 73, 165 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑇 ∨ 𝑈) ∨ 𝑧) = ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
167 | 71, 166 | breqtrd 5096 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑇 ∨ 𝑈) ≤ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
168 | 65, 167 | eqbrtrd 5092 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑄) ≤ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) |
169 | 6, 7 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) ∈ (Base‘𝐾)) |
170 | 3, 58, 75, 169 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) ∈ (Base‘𝐾)) |
171 | 6, 14, 15 | latleeqm1 18100 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ≤ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) ↔ ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) = (𝑃 ∨ 𝑄))) |
172 | 3, 10, 170, 171 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ≤ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈) ↔ ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) = (𝑃 ∨ 𝑄))) |
173 | 168, 172 | mpbid 231 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊)) ∨ 𝑈)) = (𝑃 ∨ 𝑄)) |
174 | 42, 63, 173 | 3eqtr2rd 2785 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → (𝑃 ∨ 𝑄) = (𝑂 ∨ 𝑉)) |
175 | 32, 174 | breqtrd 5096 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑁 ≤ (𝑂 ∨ 𝑉)) |