Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22eALTN Structured version   Visualization version   GIF version

Theorem cdleme22eALTN 37600
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. (Contributed by NM, 6-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22eALT.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22eALT.f 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
cdleme22eALT.g 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme22eALT.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
cdleme22eALT.o 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
Assertion
Ref Expression
cdleme22eALTN (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))

Proof of Theorem cdleme22eALTN
StepHypRef Expression
1 cdleme22eALT.n . . 3 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
2 simp11 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝐾 ∈ HL)
32hllatd 36619 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝐾 ∈ Lat)
4 simp21l 1287 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑃𝐴)
5 simp22l 1289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑄𝐴)
6 eqid 2822 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 cdleme22.j . . . . . 6 = (join‘𝐾)
8 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36622 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp12 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑊𝐻)
12 simp3ll 1241 . . . . . . 7 ((𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑦𝐴)
13123ad2ant3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑦𝐴)
14 cdleme22.l . . . . . . 7 = (le‘𝐾)
15 cdleme22.m . . . . . . 7 = (meet‘𝐾)
16 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
17 cdleme22eALT.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme22eALT.f . . . . . . 7 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
1914, 7, 15, 8, 16, 17, 18, 6cdleme1b 37481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑦𝐴)) → 𝐹 ∈ (Base‘𝐾))
202, 11, 4, 5, 13, 19syl23anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝐹 ∈ (Base‘𝐾))
21 simp31 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑆𝐴)
226, 7, 8hlatjcl 36622 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑦𝐴) → (𝑆 𝑦) ∈ (Base‘𝐾))
232, 21, 13, 22syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑆 𝑦) ∈ (Base‘𝐾))
246, 16lhpbase 37253 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2511, 24syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑊 ∈ (Base‘𝐾))
266, 15latmcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑦) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 𝑦) 𝑊) ∈ (Base‘𝐾))
273, 23, 25, 26syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑆 𝑦) 𝑊) ∈ (Base‘𝐾))
286, 7latjcl 17652 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 𝑦) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑆 𝑦) 𝑊)) ∈ (Base‘𝐾))
293, 20, 27, 28syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝐹 ((𝑆 𝑦) 𝑊)) ∈ (Base‘𝐾))
306, 14, 15latmle1 17677 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑆 𝑦) 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊))) (𝑃 𝑄))
313, 10, 29, 30syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊))) (𝑃 𝑄))
321, 31eqbrtrid 5077 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑃 𝑄))
33 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
34 simp13 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑇𝐴)
35 simp321 1320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑉𝐴)
36 simp322 1321 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑉 𝑊)
3735, 36jca 515 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑉𝐴𝑉 𝑊))
38 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑃𝑄)
39 simp323 1322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑉) = (𝑃 𝑄))
4014, 7, 15, 8, 16, 17cdleme22a 37595 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑇𝐴) ∧ ((𝑉𝐴𝑉 𝑊) ∧ 𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑉 = 𝑈)
412, 11, 33, 5, 34, 37, 38, 39, 40syl233anc 1396 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑉 = 𝑈)
4241oveq2d 7156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑂 𝑉) = (𝑂 𝑈))
43 cdleme22eALT.o . . . . 5 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
4443oveq1i 7150 . . . 4 (𝑂 𝑈) = (((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊))) 𝑈)
45 simp21r 1288 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ¬ 𝑃 𝑊)
4614, 7, 15, 8, 16, 17cdleme0a 37466 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
472, 11, 4, 45, 5, 38, 46syl222anc 1383 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑈𝐴)
48 simp3rl 1243 . . . . . . . 8 ((𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧𝐴)
49483ad2ant3 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑧𝐴)
50 cdleme22eALT.g . . . . . . . 8 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
5114, 7, 15, 8, 16, 17, 50, 6cdleme1b 37481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → 𝐺 ∈ (Base‘𝐾))
522, 11, 4, 5, 49, 51syl23anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝐺 ∈ (Base‘𝐾))
536, 7, 8hlatjcl 36622 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → (𝑇 𝑧) ∈ (Base‘𝐾))
542, 34, 49, 53syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑧) ∈ (Base‘𝐾))
556, 15latmcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
563, 54, 25, 55syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
576, 7latjcl 17652 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐺 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝐺 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
583, 52, 56, 57syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝐺 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
5914, 7, 15, 8, 16, 17cdlemeulpq 37475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
602, 11, 4, 5, 59syl22anc 837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑈 (𝑃 𝑄))
616, 14, 7, 15, 8atmod2i1 37116 . . . . 5 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐺 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑃 𝑄)) → (((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)))
622, 47, 10, 58, 60, 61syl131anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)))
6344, 62syl5req 2870 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑂 𝑈))
6441oveq2d 7156 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑉) = (𝑇 𝑈))
6539, 64eqtr3d 2859 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑄) = (𝑇 𝑈))
666, 7, 8hlatjcl 36622 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
672, 34, 47, 66syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑈) ∈ (Base‘𝐾))
686, 8atbase 36544 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
6949, 68syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑧 ∈ (Base‘𝐾))
706, 14, 7latlej1 17661 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
713, 67, 69, 70syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
727, 8hlatj32 36627 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑧𝐴)) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
732, 34, 47, 49, 72syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
746, 8atbase 36544 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7547, 74syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑈 ∈ (Base‘𝐾))
766, 7latj32 17698 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
773, 69, 75, 56, 76syl13anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
786, 7latj32 17698 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐺 𝑈) ((𝑇 𝑧) 𝑊)))
793, 52, 56, 75, 78syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐺 𝑈) ((𝑇 𝑧) 𝑊)))
806, 7, 8hlatjcl 36622 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
812, 4, 49, 80syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑧) ∈ (Base‘𝐾))
8214, 7, 8hlatlej1 36630 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → 𝑃 (𝑃 𝑧))
832, 4, 49, 82syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑃 (𝑃 𝑧))
846, 14, 7, 15, 8atmod3i1 37119 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑧)) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
852, 4, 81, 25, 83, 84syl131anc 1380 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
86 eqid 2822 . . . . . . . . . . . . . . . . . . . 20 (1.‘𝐾) = (1.‘𝐾)
8714, 7, 86, 8, 16lhpjat2 37276 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
882, 11, 33, 87syl21anc 836 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑊) = (1.‘𝐾))
8988oveq2d 7156 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑧) (𝑃 𝑊)) = ((𝑃 𝑧) (1.‘𝐾)))
90 hlol 36616 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ OL)
912, 90syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝐾 ∈ OL)
926, 15, 86olm11 36482 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ OL ∧ (𝑃 𝑧) ∈ (Base‘𝐾)) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
9391, 81, 92syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
9485, 89, 933eqtrd 2861 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 ((𝑃 𝑧) 𝑊)) = (𝑃 𝑧))
9594oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑧) 𝑄))
9617oveq2i 7151 . . . . . . . . . . . . . . . . . . 19 (𝑄 𝑈) = (𝑄 ((𝑃 𝑄) 𝑊))
9714, 7, 8hlatlej2 36631 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
982, 4, 5, 97syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑄 (𝑃 𝑄))
996, 14, 7, 15, 8atmod3i1 37119 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
1002, 5, 10, 25, 98, 99syl131anc 1380 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
10196, 100syl5eq 2869 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄 𝑈) = ((𝑃 𝑄) (𝑄 𝑊)))
102 simp22 1204 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
10314, 7, 86, 8, 16lhpjat2 37276 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
1042, 11, 102, 103syl21anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄 𝑊) = (1.‘𝐾))
105104oveq2d 7156 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) (𝑄 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
1066, 15, 86olm11 36482 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
10791, 10, 106syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
108101, 105, 1073eqtrd 2861 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄 𝑈) = (𝑃 𝑄))
109108oveq1d 7155 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1106, 8atbase 36544 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1114, 110syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑃 ∈ (Base‘𝐾))
1126, 15latmcl 17653 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1133, 81, 25, 112syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1146, 8atbase 36544 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1155, 114syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑄 ∈ (Base‘𝐾))
1166, 7latj32 17698 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1173, 111, 113, 115, 116syl13anc 1369 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
118109, 117eqtr4d 2860 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄))
1197, 8hlatj32 36627 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
1202, 4, 5, 49, 119syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
12195, 118, 1203eqtr4rd 2868 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) 𝑧) = ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)))
1226, 7latj32 17698 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
1233, 115, 75, 113, 122syl13anc 1369 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
124121, 123eqtrd 2857 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) 𝑧) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
125124oveq2d 7156 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1266, 7latjcl 17652 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1273, 10, 69, 126syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1286, 14, 7latlej2 17662 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧 ((𝑃 𝑄) 𝑧))
1293, 10, 69, 128syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑧 ((𝑃 𝑄) 𝑧))
1306, 14, 7, 15, 8atmod1i1 37112 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑧𝐴𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) ∧ 𝑧 ((𝑃 𝑄) 𝑧)) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
1312, 49, 75, 127, 129, 130syl131anc 1380 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
13250oveq1i 7150 . . . . . . . . . . . . 13 (𝐺 𝑈) = (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈)
1336, 7, 8hlatjcl 36622 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → (𝑧 𝑈) ∈ (Base‘𝐾))
1342, 49, 47, 133syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧 𝑈) ∈ (Base‘𝐾))
1356, 7latjcl 17652 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
1363, 115, 113, 135syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
13714, 7, 8hlatlej2 36631 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → 𝑈 (𝑧 𝑈))
1382, 49, 47, 137syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑈 (𝑧 𝑈))
1396, 14, 7, 15, 8atmod2i1 37116 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑧 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑧 𝑈)) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1402, 47, 134, 136, 138, 139syl131anc 1380 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
141132, 140syl5eq 2869 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝐺 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
142125, 131, 1413eqtr4rd 2868 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝐺 𝑈) = (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))))
1436, 14, 7latlej1 17661 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1443, 10, 69, 143syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1456, 14, 3, 75, 10, 127, 60, 144lattrd 17659 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑈 ((𝑃 𝑄) 𝑧))
1466, 14, 15latleeqm1 17680 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
1473, 75, 127, 146syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
148145, 147mpbid 235 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈)
149148oveq2d 7156 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = (𝑧 𝑈))
150142, 149eqtrd 2857 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝐺 𝑈) = (𝑧 𝑈))
151150oveq1d 7155 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝐺 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
15279, 151eqtrd 2857 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
15314, 7, 8hlatlej2 36631 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → 𝑧 (𝑇 𝑧))
1542, 34, 49, 153syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑧 (𝑇 𝑧))
1556, 14, 7, 15, 8atmod3i1 37119 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑧𝐴 ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑧 (𝑇 𝑧)) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
1562, 49, 54, 25, 154, 155syl131anc 1380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
157 simp33r 1298 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
15814, 7, 86, 8, 16lhpjat2 37276 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)) → (𝑧 𝑊) = (1.‘𝐾))
1592, 11, 157, 158syl21anc 836 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑧 𝑊) = (1.‘𝐾))
160159oveq2d 7156 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑧) (𝑧 𝑊)) = ((𝑇 𝑧) (1.‘𝐾)))
1616, 15, 86olm11 36482 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑇 𝑧) ∈ (Base‘𝐾)) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
16291, 54, 161syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
163156, 160, 1623eqtrrd 2862 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑧) = (𝑧 ((𝑇 𝑧) 𝑊)))
164163oveq1d 7155 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑧) 𝑈) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
16577, 152, 1643eqtr4rd 2868 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑧) 𝑈) = ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈))
16673, 165eqtrd 2857 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑇 𝑈) 𝑧) = ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈))
16771, 166breqtrd 5068 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑇 𝑈) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈))
16865, 167eqbrtrd 5064 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈))
1696, 7latjcl 17652 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1703, 58, 75, 169syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1716, 14, 15latleeqm1 17680 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
1723, 10, 170, 171syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
173168, 172mpbid 235 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → ((𝑃 𝑄) ((𝐺 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄))
17442, 63, 1733eqtr2rd 2864 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → (𝑃 𝑄) = (𝑂 𝑉))
17532, 174breqtrd 5068 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  meetcmee 17546  1.cp1 17639  Latclat 17646  OLcol 36429  Atomscatm 36518  HLchlt 36605  LHypclh 37239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-oposet 36431  df-ol 36433  df-oml 36434  df-covers 36521  df-ats 36522  df-atl 36553  df-cvlat 36577  df-hlat 36606  df-psubsp 36758  df-pmap 36759  df-padd 37051  df-lhyp 37243
This theorem is referenced by:  cdleme26eALTN  37616
  Copyright terms: Public domain W3C validator