Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk12u-2N Structured version   Visualization version   GIF version

Theorem cdlemk12u-2N 38668
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma2 (𝑉) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
cdlemk2.v 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
Assertion
Ref Expression
cdlemk12u-2N (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑑   ,𝑑   𝐶,𝑑,𝑘   𝐺,𝑑,𝑘   𝑄,𝑑   𝑃,𝑑   𝑅,𝑑   𝑇,𝑑   𝑊,𝑑   ,𝑘   ,𝑘   ,𝑘   𝐴,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐻   𝑘,𝐾   𝑘,𝑁   𝑄,𝑘   𝑃,𝑘   𝑅,𝑘   𝑇,𝑘   𝑘,𝑊   𝐹,𝑑   𝑋,𝑑,𝑘
Allowed substitution hints:   𝐴(𝑓,𝑑)   𝐵(𝑓,𝑖,𝑘,𝑑)   𝑄(𝑓,𝑖)   𝑆(𝑓,𝑖,𝑘,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑓,𝑑)   𝐾(𝑓,𝑑)   (𝑓,𝑑)   𝑁(𝑑)   𝑉(𝑓,𝑖,𝑘,𝑑)   𝑋(𝑓,𝑖)

Proof of Theorem cdlemk12u-2N
StepHypRef Expression
1 simp11 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
2 simp12 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
31, 2jca 515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp211 1313 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
5 simp212 1314 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶𝑇)
6 simp213 1315 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑁𝑇)
7 simp22l 1294 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
8 simp23l 1296 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑋𝑇)
96, 7, 83jca 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑇𝐺𝑇𝑋𝑇))
10 simp33 1213 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
11 simp13 1207 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝑁))
12 simp322 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
13 simp323 1327 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵))
14 simp22r 1295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺 ≠ ( I ↾ 𝐵))
1512, 13, 143jca 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
16 simp23r 1297 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑋 ≠ ( I ↾ 𝐵))
17 simp321 1325 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝑋))
1816, 17jca 515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)))
19 simp31 1211 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)))
20 cdlemk2.b . . 3 𝐵 = (Base‘𝐾)
21 cdlemk2.l . . 3 = (le‘𝐾)
22 cdlemk2.j . . 3 = (join‘𝐾)
23 cdlemk2.m . . 3 = (meet‘𝐾)
24 cdlemk2.a . . 3 𝐴 = (Atoms‘𝐾)
25 cdlemk2.h . . 3 𝐻 = (LHyp‘𝐾)
26 cdlemk2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
27 cdlemk2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
28 cdlemk2.s . . 3 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
29 cdlemk2.q . . 3 𝑄 = (𝑆𝐶)
30 cdlemk2.v . . 3 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
3120, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30cdlemk12u 38650 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)))) → ((𝑉𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
323, 4, 5, 9, 10, 11, 15, 18, 19, 31syl333anc 1404 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5068  cmpt 5150   I cid 5469  ccnv 5565  cres 5568  ccom 5570  cfv 6398  crio 7188  (class class class)co 7232  Basecbs 16785  lecple 16834  joincjn 17843  meetcmee 17844  Atomscatm 37041  HLchlt 37128  LHypclh 37762  LTrncltrn 37879  trLctrl 37936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-riotaBAD 36731
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-undef 8036  df-map 8531  df-proset 17827  df-poset 17845  df-plt 17861  df-lub 17877  df-glb 17878  df-join 17879  df-meet 17880  df-p0 17956  df-p1 17957  df-lat 17963  df-clat 18030  df-oposet 36954  df-ol 36956  df-oml 36957  df-covers 37044  df-ats 37045  df-atl 37076  df-cvlat 37100  df-hlat 37129  df-llines 37276  df-lplanes 37277  df-lvols 37278  df-lines 37279  df-psubsp 37281  df-pmap 37282  df-padd 37574  df-lhyp 37766  df-laut 37767  df-ldil 37882  df-ltrn 37883  df-trl 37937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator