Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme18d Structured version   Visualization version   GIF version

Theorem cdleme18d 40319
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th sentence of 4th paragraph. 𝐹, 𝐺, 𝐷, 𝐸 represent f(s), fs(r), f(t), ft(r) respectively. We show fs(r) = ft(r) for all possible r (which must equal p or q in the case of exactly 3 atoms in p q/0 , i.e., when ¬ ∃𝑟𝐴...). (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme18d.l = (le‘𝐾)
cdleme18d.j = (join‘𝐾)
cdleme18d.m = (meet‘𝐾)
cdleme18d.a 𝐴 = (Atoms‘𝐾)
cdleme18d.h 𝐻 = (LHyp‘𝐾)
cdleme18d.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme18d.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme18d.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme18d.d 𝐷 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme18d.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme18d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝐸)
Distinct variable groups:   𝐴,𝑟   𝐷,𝑟   𝐹,𝑟   ,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑆,𝑟   𝑇,𝑟   𝑊,𝑟
Allowed substitution hints:   𝑈(𝑟)   𝐸(𝑟)   𝐺(𝑟)   𝐻(𝑟)   𝐾(𝑟)

Proof of Theorem cdleme18d
StepHypRef Expression
1 eleq1 2823 . . . . . . . 8 (𝑅 = 𝑃 → (𝑅𝐴𝑃𝐴))
2 breq1 5127 . . . . . . . . 9 (𝑅 = 𝑃 → (𝑅 𝑊𝑃 𝑊))
32notbid 318 . . . . . . . 8 (𝑅 = 𝑃 → (¬ 𝑅 𝑊 ↔ ¬ 𝑃 𝑊))
41, 3anbi12d 632 . . . . . . 7 (𝑅 = 𝑃 → ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ↔ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)))
543anbi1d 1442 . . . . . 6 (𝑅 = 𝑃 → (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ↔ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊))))
653anbi2d 1443 . . . . 5 (𝑅 = 𝑃 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))))))
7 simp11 1204 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp21 1207 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 simp13l 1289 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
10 simp22 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
11 simp322 1325 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑆 (𝑃 𝑄))
12 cdleme18d.l . . . . . . . 8 = (le‘𝐾)
13 cdleme18d.j . . . . . . . 8 = (join‘𝐾)
14 cdleme18d.m . . . . . . . 8 = (meet‘𝐾)
15 cdleme18d.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
16 cdleme18d.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
17 cdleme18d.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme18d.f . . . . . . . 8 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
19 eqid 2736 . . . . . . . 8 ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
2012, 13, 14, 15, 16, 17, 18, 19cdleme17d1 40313 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = 𝑄)
217, 8, 9, 10, 11, 20syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = 𝑄)
22 simp23 1209 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
23 simp323 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑇 (𝑃 𝑄))
24 cdleme18d.d . . . . . . . 8 𝐷 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
25 eqid 2736 . . . . . . . 8 ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊)))
2612, 13, 14, 15, 16, 17, 24, 25cdleme17d1 40313 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ¬ 𝑇 (𝑃 𝑄)) → ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊))) = 𝑄)
277, 8, 9, 22, 23, 26syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊))) = 𝑄)
2821, 27eqtr4d 2774 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊))))
296, 28biimtrdi 253 . . . 4 (𝑅 = 𝑃 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊)))))
30 cdleme18d.g . . . . . 6 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
31 cdleme18d.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊)))
3230, 31eqeq12i 2754 . . . . 5 (𝐺 = 𝐸 ↔ ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))))
33 oveq1 7417 . . . . . . . . 9 (𝑅 = 𝑃 → (𝑅 𝑆) = (𝑃 𝑆))
3433oveq1d 7425 . . . . . . . 8 (𝑅 = 𝑃 → ((𝑅 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊))
3534oveq2d 7426 . . . . . . 7 (𝑅 = 𝑃 → (𝐹 ((𝑅 𝑆) 𝑊)) = (𝐹 ((𝑃 𝑆) 𝑊)))
3635oveq2d 7426 . . . . . 6 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))))
37 oveq1 7417 . . . . . . . . 9 (𝑅 = 𝑃 → (𝑅 𝑇) = (𝑃 𝑇))
3837oveq1d 7425 . . . . . . . 8 (𝑅 = 𝑃 → ((𝑅 𝑇) 𝑊) = ((𝑃 𝑇) 𝑊))
3938oveq2d 7426 . . . . . . 7 (𝑅 = 𝑃 → (𝐷 ((𝑅 𝑇) 𝑊)) = (𝐷 ((𝑃 𝑇) 𝑊)))
4039oveq2d 7426 . . . . . 6 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊))))
4136, 40eqeq12d 2752 . . . . 5 (𝑅 = 𝑃 → (((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))) ↔ ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊)))))
4232, 41bitrid 283 . . . 4 (𝑅 = 𝑃 → (𝐺 = 𝐸 ↔ ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑃 𝑇) 𝑊)))))
4329, 42sylibrd 259 . . 3 (𝑅 = 𝑃 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝐸))
4443com12 32 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝐺 = 𝐸))
45 eleq1 2823 . . . . . . . 8 (𝑅 = 𝑄 → (𝑅𝐴𝑄𝐴))
46 breq1 5127 . . . . . . . . 9 (𝑅 = 𝑄 → (𝑅 𝑊𝑄 𝑊))
4746notbid 318 . . . . . . . 8 (𝑅 = 𝑄 → (¬ 𝑅 𝑊 ↔ ¬ 𝑄 𝑊))
4845, 47anbi12d 632 . . . . . . 7 (𝑅 = 𝑄 → ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ↔ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
49483anbi1d 1442 . . . . . 6 (𝑅 = 𝑄 → (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ↔ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊))))
50 breq1 5127 . . . . . . . 8 (𝑅 = 𝑄 → (𝑅 (𝑃 𝑄) ↔ 𝑄 (𝑃 𝑄)))
51503anbi1d 1442 . . . . . . 7 (𝑅 = 𝑄 → ((𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ↔ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))))
52513anbi2d 1443 . . . . . 6 (𝑅 = 𝑄 → ((𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ↔ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))))
5349, 523anbi23d 1441 . . . . 5 (𝑅 = 𝑄 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))))))
54 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
55 simp11r 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑊𝐻)
56 simp12 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
57 simp21 1207 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
58 simp22 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
59 simp31 1210 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
60 simp322 1325 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑆 (𝑃 𝑄))
61 simp33 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
62 eqid 2736 . . . . . . . 8 ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊)))
6312, 13, 14, 15, 16, 17, 18, 62cdleme18c 40317 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = 𝑃)
6454, 55, 56, 57, 58, 59, 60, 61, 63syl233anc 1401 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = 𝑃)
65 simp23 1209 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
66 simp323 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑇 (𝑃 𝑄))
67 eqid 2736 . . . . . . . 8 ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊)))
6812, 13, 14, 15, 16, 17, 24, 67cdleme18c 40317 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊))) = 𝑃)
6954, 55, 56, 57, 65, 59, 66, 61, 68syl233anc 1401 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊))) = 𝑃)
7064, 69eqtr4d 2774 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑄 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊))))
7153, 70biimtrdi 253 . . . 4 (𝑅 = 𝑄 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊)))))
72 oveq1 7417 . . . . . . . . 9 (𝑅 = 𝑄 → (𝑅 𝑆) = (𝑄 𝑆))
7372oveq1d 7425 . . . . . . . 8 (𝑅 = 𝑄 → ((𝑅 𝑆) 𝑊) = ((𝑄 𝑆) 𝑊))
7473oveq2d 7426 . . . . . . 7 (𝑅 = 𝑄 → (𝐹 ((𝑅 𝑆) 𝑊)) = (𝐹 ((𝑄 𝑆) 𝑊)))
7574oveq2d 7426 . . . . . 6 (𝑅 = 𝑄 → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))))
76 oveq1 7417 . . . . . . . . 9 (𝑅 = 𝑄 → (𝑅 𝑇) = (𝑄 𝑇))
7776oveq1d 7425 . . . . . . . 8 (𝑅 = 𝑄 → ((𝑅 𝑇) 𝑊) = ((𝑄 𝑇) 𝑊))
7877oveq2d 7426 . . . . . . 7 (𝑅 = 𝑄 → (𝐷 ((𝑅 𝑇) 𝑊)) = (𝐷 ((𝑄 𝑇) 𝑊)))
7978oveq2d 7426 . . . . . 6 (𝑅 = 𝑄 → ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊))))
8075, 79eqeq12d 2752 . . . . 5 (𝑅 = 𝑄 → (((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))) ↔ ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊)))))
8132, 80bitrid 283 . . . 4 (𝑅 = 𝑄 → (𝐺 = 𝐸 ↔ ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑄 𝑇) 𝑊)))))
8271, 81sylibrd 259 . . 3 (𝑅 = 𝑄 → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝐸))
8382com12 32 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑄𝐺 = 𝐸))
84 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
85 simp321 1324 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑅 (𝑃 𝑄))
86 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
87 simp12l 1287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
88 simp13l 1289 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
89 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
90 simp21l 1291 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑅𝐴)
91 simp21r 1292 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑅 𝑊)
9212, 13, 15cdleme0nex 40314 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
9384, 85, 86, 87, 88, 89, 90, 91, 92syl332anc 1403 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
9444, 83, 93mpjaod 860 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  lecple 17283  joincjn 18328  meetcmee 18329  Atomscatm 39286  HLchlt 39373  LHypclh 40008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012
This theorem is referenced by:  cdleme21  40361
  Copyright terms: Public domain W3C validator