Step | Hyp | Ref
| Expression |
1 | | simp11l 1285 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΎ β HL) |
2 | 1 | hllatd 38234 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΎ β Lat) |
3 | | simp11r 1286 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π») |
4 | | simp12l 1287 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
5 | | simp13l 1289 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
6 | | simp22l 1293 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
7 | | cdleme19.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
8 | | cdleme19.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
9 | | cdleme19.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
10 | | cdleme19.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
11 | | cdleme19.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
12 | | cdleme19.u |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
13 | | cdleme19.f |
. . . . . 6
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
14 | | eqid 2733 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | cdleme1b 39097 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΉ β (BaseβπΎ)) |
16 | 1, 3, 4, 5, 6, 15 | syl23anc 1378 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΉ β (BaseβπΎ)) |
17 | | simp21l 1291 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π
β π΄) |
18 | | cdleme19.d |
. . . . . 6
β’ π· = ((π
β¨ π) β§ π) |
19 | 7, 8, 9, 10, 11, 18, 14 | cdlemedb 39168 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π
β π΄ β§ π β π΄)) β π· β (BaseβπΎ)) |
20 | 1, 3, 17, 6, 19 | syl22anc 838 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π· β (BaseβπΎ)) |
21 | | simp23l 1295 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
22 | | cdleme19.g |
. . . . . 6
β’ πΊ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
23 | 7, 8, 9, 10, 11, 12, 22, 14 | cdleme1b 39097 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΊ β (BaseβπΎ)) |
24 | 1, 3, 4, 5, 21, 23 | syl23anc 1378 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΊ β (BaseβπΎ)) |
25 | | cdleme19.y |
. . . . . 6
β’ π = ((π
β¨ π) β§ π) |
26 | 7, 8, 9, 10, 11, 25, 14 | cdlemedb 39168 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π
β π΄ β§ π β π΄)) β π β (BaseβπΎ)) |
27 | 1, 3, 17, 21, 26 | syl22anc 838 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β (BaseβπΎ)) |
28 | 14, 8 | latj4 18442 |
. . . 4
β’ ((πΎ β Lat β§ (πΉ β (BaseβπΎ) β§ π· β (BaseβπΎ)) β§ (πΊ β (BaseβπΎ) β§ π β (BaseβπΎ))) β ((πΉ β¨ π·) β¨ (πΊ β¨ π)) = ((πΉ β¨ πΊ) β¨ (π· β¨ π))) |
29 | 2, 16, 20, 24, 27, 28 | syl122anc 1380 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ π·) β¨ (πΊ β¨ π)) = ((πΉ β¨ πΊ) β¨ (π· β¨ π))) |
30 | | simp1 1137 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
31 | | simp22 1208 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
32 | | simp23 1209 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
33 | | simp21 1207 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π
β π΄ β§ Β¬ π
β€ π)) |
34 | | simp31 1210 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π β π β§ π β π)) |
35 | | simp321 1324 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
36 | | simp322 1325 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
37 | 35, 36 | jca 513 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) |
38 | | simp323 1326 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π
β€ (π β¨ π)) |
39 | | cdleme20.v |
. . . . . . 7
β’ π = ((π β¨ π) β§ π) |
40 | 7, 8, 9, 10, 11, 12, 13, 22, 18, 25, 39 | cdleme20d 39183 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ π
β€ (π β¨ π))) β ((πΉ β¨ πΊ) β§ (π· β¨ π)) = π) |
41 | 30, 31, 32, 33, 34, 37, 38, 40 | syl133anc 1394 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ πΊ) β§ (π· β¨ π)) = π) |
42 | | simp22r 1294 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ π) |
43 | | simp31r 1298 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π) |
44 | 7, 8, 9, 10, 11, 39 | lhpat2 38916 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
45 | 1, 3, 6, 42, 21, 43, 44 | syl222anc 1387 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
46 | 41, 45 | eqeltrd 2834 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ πΊ) β§ (π· β¨ π)) β π΄) |
47 | | simp11 1204 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (πΎ β HL β§ π β π»)) |
48 | | simp12 1205 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
49 | | simp13 1206 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
50 | | simp31l 1297 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π) |
51 | 7, 8, 9, 10, 11, 12, 13 | cdleme3fa 39107 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΉ β π΄) |
52 | 47, 48, 49, 31, 50, 35, 51 | syl132anc 1389 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΉ β π΄) |
53 | 7, 8, 9, 10, 11, 12, 22 | cdleme3fa 39107 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΊ β π΄) |
54 | 47, 48, 49, 32, 50, 36, 53 | syl132anc 1389 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΊ β π΄) |
55 | | simp33r 1302 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
56 | 7, 8, 9, 10, 11, 12, 13, 22 | cdleme16b 39150 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β πΊ) |
57 | 30, 31, 32, 34, 35, 36, 55, 56 | syl133anc 1394 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΉ β πΊ) |
58 | | eqid 2733 |
. . . . . . 7
β’
(LLinesβπΎ) =
(LLinesβπΎ) |
59 | 8, 10, 58 | llni2 38383 |
. . . . . 6
β’ (((πΎ β HL β§ πΉ β π΄ β§ πΊ β π΄) β§ πΉ β πΊ) β (πΉ β¨ πΊ) β (LLinesβπΎ)) |
60 | 1, 52, 54, 57, 59 | syl31anc 1374 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (πΉ β¨ πΊ) β (LLinesβπΎ)) |
61 | 7, 8, 9, 10, 11, 18 | cdlemeda 39169 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
β π΄ β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π· β π΄) |
62 | 1, 3, 6, 42, 17, 38, 35, 61 | syl223anc 1397 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π· β π΄) |
63 | | simp23r 1296 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ π) |
64 | 7, 8, 9, 10, 11, 25 | cdlemeda 39169 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
β π΄ β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
65 | 1, 3, 21, 63, 17, 38, 36, 64 | syl223anc 1397 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
66 | | simp32 1211 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π))) |
67 | | simp33l 1301 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π
β€ (π β¨ π)) |
68 | 7, 8, 9, 10, 11, 12, 13, 22, 18, 25, 39 | cdleme20j 39189 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ Β¬ π
β€ (π β¨ π))) β π· β π) |
69 | 47, 48, 49, 33, 31, 32, 34, 66, 67, 68 | syl333anc 1403 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π· β π) |
70 | 8, 10, 58 | llni2 38383 |
. . . . . 6
β’ (((πΎ β HL β§ π· β π΄ β§ π β π΄) β§ π· β π) β (π· β¨ π) β (LLinesβπΎ)) |
71 | 1, 62, 65, 69, 70 | syl31anc 1374 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (π· β¨ π) β (LLinesβπΎ)) |
72 | | eqid 2733 |
. . . . . 6
β’
(LPlanesβπΎ) =
(LPlanesβπΎ) |
73 | 8, 9, 10, 58, 72 | 2llnmj 38431 |
. . . . 5
β’ ((πΎ β HL β§ (πΉ β¨ πΊ) β (LLinesβπΎ) β§ (π· β¨ π) β (LLinesβπΎ)) β (((πΉ β¨ πΊ) β§ (π· β¨ π)) β π΄ β ((πΉ β¨ πΊ) β¨ (π· β¨ π)) β (LPlanesβπΎ))) |
74 | 1, 60, 71, 73 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (((πΉ β¨ πΊ) β§ (π· β¨ π)) β π΄ β ((πΉ β¨ πΊ) β¨ (π· β¨ π)) β (LPlanesβπΎ))) |
75 | 46, 74 | mpbid 231 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ πΊ) β¨ (π· β¨ π)) β (LPlanesβπΎ)) |
76 | 29, 75 | eqeltrd 2834 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ π·) β¨ (πΊ β¨ π)) β (LPlanesβπΎ)) |
77 | 7, 8, 9, 10, 11, 12, 13, 22, 18, 25, 39 | cdleme20l1 39191 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π))) β (πΉ β¨ π·) β (LLinesβπΎ)) |
78 | 47, 48, 49, 17, 6, 42, 50, 35, 38, 77 | syl333anc 1403 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (πΉ β¨ π·) β (LLinesβπΎ)) |
79 | | eqid 2733 |
. . . . 5
β’ ((π β¨ π) β§ π) = ((π β¨ π) β§ π) |
80 | 7, 8, 9, 10, 11, 12, 22, 13, 25, 18, 79 | cdleme20l1 39191 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π))) β (πΊ β¨ π) β (LLinesβπΎ)) |
81 | 47, 48, 49, 17, 21, 63, 50, 36, 38, 80 | syl333anc 1403 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (πΊ β¨ π) β (LLinesβπΎ)) |
82 | 8, 9, 10, 58, 72 | 2llnmj 38431 |
. . 3
β’ ((πΎ β HL β§ (πΉ β¨ π·) β (LLinesβπΎ) β§ (πΊ β¨ π) β (LLinesβπΎ)) β (((πΉ β¨ π·) β§ (πΊ β¨ π)) β π΄ β ((πΉ β¨ π·) β¨ (πΊ β¨ π)) β (LPlanesβπΎ))) |
83 | 1, 78, 81, 82 | syl3anc 1372 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (((πΉ β¨ π·) β§ (πΊ β¨ π)) β π΄ β ((πΉ β¨ π·) β¨ (πΊ β¨ π)) β (LPlanesβπΎ))) |
84 | 76, 83 | mpbird 257 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((πΉ β¨ π·) β§ (πΊ β¨ π)) β π΄) |