Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20l Structured version   Visualization version   GIF version

Theorem cdleme20l 37460
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20l ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝑃 𝑄) (𝐹 𝐷)))

Proof of Theorem cdleme20l
StepHypRef Expression
1 cdleme19.l . . . 4 = (le‘𝐾)
2 cdleme19.j . . . 4 = (join‘𝐾)
3 cdleme19.m . . . 4 = (meet‘𝐾)
4 cdleme19.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdleme19.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdleme19.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme19.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme19.g . . . 4 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
9 cdleme19.d . . . 4 𝐷 = ((𝑅 𝑆) 𝑊)
10 cdleme19.y . . . 4 𝑌 = ((𝑅 𝑇) 𝑊)
11 cdleme20.v . . . 4 𝑉 = ((𝑆 𝑇) 𝑊)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20i 37455 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄))
13 simp11l 1280 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐾 ∈ HL)
14 simp11 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp12 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
16 simp13 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
17 simp21l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑅𝐴)
18 simp22l 1288 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑆𝐴)
19 simp22r 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑆 𝑊)
20 simp31l 1292 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑃𝑄)
21 simp321 1319 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑆 (𝑃 𝑄))
22 simp323 1321 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑅 (𝑃 𝑄))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20l1 37458 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝐷) ∈ (LLines‘𝐾))
2414, 15, 16, 17, 18, 19, 20, 21, 22, 23syl333anc 1398 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ∈ (LLines‘𝐾))
25 simp23l 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑇𝐴)
26 simp23r 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑇 𝑊)
27 simp322 1320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑇 (𝑃 𝑄))
28 eqid 2823 . . . . . 6 ((𝑇 𝑆) 𝑊) = ((𝑇 𝑆) 𝑊)
291, 2, 3, 4, 5, 6, 8, 7, 10, 9, 28cdleme20l1 37458 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐺 𝑌) ∈ (LLines‘𝐾))
3014, 15, 16, 17, 25, 26, 20, 27, 22, 29syl333anc 1398 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐺 𝑌) ∈ (LLines‘𝐾))
31 simp12l 1282 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑃𝐴)
32 simp13l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑄𝐴)
33 eqid 2823 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
342, 4, 33llni2 36650 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
3513, 31, 32, 20, 34syl31anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20l2 37459 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) ∈ 𝐴)
37 simp22 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
38 simp21 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
391, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20k 37457 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝐷) ≠ (𝑃 𝑄))
4014, 31, 32, 37, 38, 21, 22, 39syl322anc 1394 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ≠ (𝑃 𝑄))
411, 2, 3, 4, 33llnexchb2 37007 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹 𝐷) ∈ (LLines‘𝐾) ∧ (𝐺 𝑌) ∈ (LLines‘𝐾) ∧ (𝑃 𝑄) ∈ (LLines‘𝐾)) ∧ (((𝐹 𝐷) (𝐺 𝑌)) ∈ 𝐴 ∧ (𝐹 𝐷) ≠ (𝑃 𝑄))) → (((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄) ↔ ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄))))
4213, 24, 30, 35, 36, 40, 41syl132anc 1384 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄) ↔ ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄))))
4312, 42mpbid 234 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄)))
4413hllatd 36502 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐾 ∈ Lat)
45 eqid 2823 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4645, 2, 4hlatjcl 36505 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4713, 31, 32, 46syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
48 simp11r 1281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑊𝐻)
491, 2, 3, 4, 5, 6, 7, 45cdleme1b 37364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
5013, 48, 31, 32, 18, 49syl23anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐹 ∈ (Base‘𝐾))
511, 2, 3, 4, 5, 9, 45cdlemedb 37435 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷 ∈ (Base‘𝐾))
5213, 48, 17, 18, 51syl22anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐷 ∈ (Base‘𝐾))
5345, 2latjcl 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾)) → (𝐹 𝐷) ∈ (Base‘𝐾))
5444, 50, 52, 53syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ∈ (Base‘𝐾))
5545, 3latmcom 17687 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 𝐷) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 𝐷)) = ((𝐹 𝐷) (𝑃 𝑄)))
5644, 47, 54, 55syl3anc 1367 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝑃 𝑄) (𝐹 𝐷)) = ((𝐹 𝐷) (𝑃 𝑄)))
5743, 56eqtr4d 2861 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝑃 𝑄) (𝐹 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  Latclat 17657  Atomscatm 36401  HLchlt 36488  LLinesclln 36629  LHypclh 37122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126
This theorem is referenced by:  cdleme20m  37461
  Copyright terms: Public domain W3C validator