MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Visualization version   GIF version

Theorem simp322 1323
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)

Proof of Theorem simp322
StepHypRef Expression
1 simp22 1206 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜓)
213ad2ant3 1134 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  dalemqnet  37666  dalemrot  37671  dath2  37751  cdleme18d  38309  cdleme20i  38331  cdleme20j  38332  cdleme20l2  38335  cdleme20l  38336  cdleme20m  38337  cdleme20  38338  cdleme21j  38350  cdleme22eALTN  38359  cdleme26eALTN  38375  cdlemk16a  38870  cdlemk12u-2N  38904  cdlemk21-2N  38905  cdlemk22  38907  cdlemk31  38910  cdlemk32  38911  cdlemk11ta  38943  cdlemk11tc  38959
  Copyright terms: Public domain W3C validator