| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp322 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp322 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp22 1208 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dalemqnet 39646 dalemrot 39651 dath2 39731 cdleme18d 40289 cdleme20i 40311 cdleme20j 40312 cdleme20l2 40315 cdleme20l 40316 cdleme20m 40317 cdleme20 40318 cdleme21j 40330 cdleme22eALTN 40339 cdleme26eALTN 40355 cdlemk16a 40850 cdlemk12u-2N 40884 cdlemk21-2N 40885 cdlemk22 40887 cdlemk31 40890 cdlemk32 40891 cdlemk11ta 40923 cdlemk11tc 40939 |
| Copyright terms: Public domain | W3C validator |