![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp322 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp322 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: dalemqnet 39635 dalemrot 39640 dath2 39720 cdleme18d 40278 cdleme20i 40300 cdleme20j 40301 cdleme20l2 40304 cdleme20l 40305 cdleme20m 40306 cdleme20 40307 cdleme21j 40319 cdleme22eALTN 40328 cdleme26eALTN 40344 cdlemk16a 40839 cdlemk12u-2N 40873 cdlemk21-2N 40874 cdlemk22 40876 cdlemk31 40879 cdlemk32 40880 cdlemk11ta 40912 cdlemk11tc 40928 |
Copyright terms: Public domain | W3C validator |