MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Visualization version   GIF version

Theorem simp322 1323
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)

Proof of Theorem simp322
StepHypRef Expression
1 simp22 1206 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜓)
213ad2ant3 1134 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemqnet  39635  dalemrot  39640  dath2  39720  cdleme18d  40278  cdleme20i  40300  cdleme20j  40301  cdleme20l2  40304  cdleme20l  40305  cdleme20m  40306  cdleme20  40307  cdleme21j  40319  cdleme22eALTN  40328  cdleme26eALTN  40344  cdlemk16a  40839  cdlemk12u-2N  40873  cdlemk21-2N  40874  cdlemk22  40876  cdlemk31  40879  cdlemk32  40880  cdlemk11ta  40912  cdlemk11tc  40928
  Copyright terms: Public domain W3C validator