MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Visualization version   GIF version

Theorem simp322 1324
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)

Proof of Theorem simp322
StepHypRef Expression
1 simp22 1207 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜓)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  dalemqnet  39609  dalemrot  39614  dath2  39694  cdleme18d  40252  cdleme20i  40274  cdleme20j  40275  cdleme20l2  40278  cdleme20l  40279  cdleme20m  40280  cdleme20  40281  cdleme21j  40293  cdleme22eALTN  40302  cdleme26eALTN  40318  cdlemk16a  40813  cdlemk12u-2N  40847  cdlemk21-2N  40848  cdlemk22  40850  cdlemk31  40853  cdlemk32  40854  cdlemk11ta  40886  cdlemk11tc  40902
  Copyright terms: Public domain W3C validator