MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Visualization version   GIF version

Theorem simp322 1322
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)

Proof of Theorem simp322
StepHypRef Expression
1 simp22 1205 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜓)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  dalemqnet  37593  dalemrot  37598  dath2  37678  cdleme18d  38236  cdleme20i  38258  cdleme20j  38259  cdleme20l2  38262  cdleme20l  38263  cdleme20m  38264  cdleme20  38265  cdleme21j  38277  cdleme22eALTN  38286  cdleme26eALTN  38302  cdlemk16a  38797  cdlemk12u-2N  38831  cdlemk21-2N  38832  cdlemk22  38834  cdlemk31  38837  cdlemk32  38838  cdlemk11ta  38870  cdlemk11tc  38886
  Copyright terms: Public domain W3C validator