Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrot Structured version   Visualization version   GIF version

Theorem dalemrot 38832
Description: Lemma for dath 38911. Rotate triangles π‘Œ = 𝑃𝑄𝑅 and 𝑍 = π‘†π‘‡π‘ˆ to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalemc.l ≀ = (leβ€˜πΎ)
dalemc.j ∨ = (joinβ€˜πΎ)
dalemc.a 𝐴 = (Atomsβ€˜πΎ)
dalemrot.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
dalemrot.z 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
Assertion
Ref Expression
dalemrot (πœ‘ β†’ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃) ∧ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆) ∧ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇)) ∧ (𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ) ∧ 𝐢 ≀ (𝑃 ∨ 𝑆)))))

Proof of Theorem dalemrot
StepHypRef Expression
1 dalema.ph . . . . 5 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
21dalemkehl 38798 . . . 4 (πœ‘ β†’ 𝐾 ∈ HL)
3 dalemc.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
41, 3dalemceb 38813 . . . 4 (πœ‘ β†’ 𝐢 ∈ (Baseβ€˜πΎ))
52, 4jca 511 . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)))
61dalemqea 38802 . . . 4 (πœ‘ β†’ 𝑄 ∈ 𝐴)
71dalemrea 38803 . . . 4 (πœ‘ β†’ 𝑅 ∈ 𝐴)
81dalempea 38801 . . . 4 (πœ‘ β†’ 𝑃 ∈ 𝐴)
96, 7, 83jca 1127 . . 3 (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
101dalemtea 38805 . . . 4 (πœ‘ β†’ 𝑇 ∈ 𝐴)
111dalemuea 38806 . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝐴)
121dalemsea 38804 . . . 4 (πœ‘ β†’ 𝑆 ∈ 𝐴)
1310, 11, 123jca 1127 . . 3 (πœ‘ β†’ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴))
145, 9, 133jca 1127 . 2 (πœ‘ β†’ ((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)))
15 dalemc.j . . . . 5 ∨ = (joinβ€˜πΎ)
161, 15, 3dalemqrprot 38823 . . . 4 (πœ‘ β†’ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅))
17 dalemrot.y . . . . 5 π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
181dalemyeo 38807 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑂)
1917, 18eqeltrrid 2837 . . . 4 (πœ‘ β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂)
2016, 19eqeltrd 2832 . . 3 (πœ‘ β†’ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂)
2115, 3hlatjrot 38547 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
222, 10, 11, 12, 21syl13anc 1371 . . . 4 (πœ‘ β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
23 dalemrot.z . . . . 5 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
241dalemzeo 38808 . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑂)
2523, 24eqeltrrid 2837 . . . 4 (πœ‘ β†’ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂)
2622, 25eqeltrd 2832 . . 3 (πœ‘ β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) ∈ 𝑂)
2720, 26jca 511 . 2 (πœ‘ β†’ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) ∈ 𝑂))
28 simp312 1320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅))
291, 28sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅))
30 simp313 1321 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃))
311, 30sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃))
321dalem-clpjq 38812 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄))
3329, 31, 323jca 1127 . . 3 (πœ‘ β†’ (Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃) ∧ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄)))
34 simp322 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ))
351, 34sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ))
36 simp323 1324 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆))
371, 36sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆))
38 simp321 1322 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇))
391, 38sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇))
4035, 37, 393jca 1127 . . 3 (πœ‘ β†’ (Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆) ∧ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇)))
411dalemclqjt 38810 . . . 4 (πœ‘ β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
421dalemclrju 38811 . . . 4 (πœ‘ β†’ 𝐢 ≀ (𝑅 ∨ π‘ˆ))
431dalemclpjs 38809 . . . 4 (πœ‘ β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
4441, 42, 433jca 1127 . . 3 (πœ‘ β†’ (𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ) ∧ 𝐢 ≀ (𝑃 ∨ 𝑆)))
4533, 40, 443jca 1127 . 2 (πœ‘ β†’ ((Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃) ∧ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆) ∧ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇)) ∧ (𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ) ∧ 𝐢 ≀ (𝑃 ∨ 𝑆))))
4614, 27, 453jca 1127 1 (πœ‘ β†’ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ π‘ˆ) ∨ 𝑆) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃) ∧ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆) ∧ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇)) ∧ (𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ) ∧ 𝐢 ≀ (𝑃 ∨ 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  Atomscatm 38437  HLchlt 38524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18253  df-poset 18271  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-lat 18390  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525
This theorem is referenced by:  dalemeea  38838  dalem6  38843  dalem7  38844  dalem11  38849  dalem12  38850  dalem29  38876  dalem30  38877  dalem31N  38878  dalem32  38879  dalem33  38880  dalem34  38881  dalem35  38882  dalem36  38883  dalem37  38884  dalem40  38887  dalem46  38893  dalem47  38894  dalem49  38896  dalem50  38897  dalem58  38905  dalem59  38906
  Copyright terms: Public domain W3C validator