| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimgfi1 | Structured version Visualization version GIF version | ||
| Description: A closed version of spcimgf 3505. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 27-Jul-2025.) |
| Ref | Expression |
|---|---|
| spcimgfi1.1 | ⊢ Ⅎ𝑥𝜓 |
| spcimgfi1.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| spcimgfi1 | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgfi1.2 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | spcimgfi1.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcimgft 3501 | . . 3 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | |
| 4 | 3 | ex 412 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) → (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓)))) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: spcgft 3504 spcimgf 3505 ss2iundf 43691 spcdvw 49710 |
| Copyright terms: Public domain | W3C validator |