MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgft Structured version   Visualization version   GIF version

Theorem spcgft 3561
Description: A closed version of spcgf 3604. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgfi1.1 𝑥𝜓
spcimgfi1.2 𝑥𝐴
Assertion
Ref Expression
spcgft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))

Proof of Theorem spcgft
StepHypRef Expression
1 biimp 215 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
21imim2i 16 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
32alimi 1809 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)))
4 spcimgfi1.1 . . 3 𝑥𝜓
5 spcimgfi1.2 . . 3 𝑥𝐴
64, 5spcimgfi1 3559 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
73, 6syl 17 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by:  spcgf  3604  rspct  3621
  Copyright terms: Public domain W3C validator