![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcgft | Structured version Visualization version GIF version |
Description: A closed version of spcgf 3604. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgfi1.1 | ⊢ Ⅎ𝑥𝜓 |
spcimgfi1.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
spcgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | imim2i 16 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜑 → 𝜓))) |
3 | 2 | alimi 1809 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) |
4 | spcimgfi1.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | spcimgfi1.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | spcimgfi1 3559 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
7 | 3, 6 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 |
This theorem is referenced by: spcgf 3604 rspct 3621 |
Copyright terms: Public domain | W3C validator |