![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcgft | Structured version Visualization version GIF version |
Description: A closed version of spcgf 3474. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgft.1 | ⊢ Ⅎ𝑥𝜓 |
spcimgft.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
spcgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 207 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | imim2i 16 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜑 → 𝜓))) |
3 | 2 | alimi 1907 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) |
4 | spcimgft.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | spcimgft.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | spcimgft 3470 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
7 | 3, 6 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1651 = wceq 1653 Ⅎwnf 1879 ∈ wcel 2157 Ⅎwnfc 2926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 |
This theorem is referenced by: spcgf 3474 rspct 3488 |
Copyright terms: Public domain | W3C validator |