| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcgft | Structured version Visualization version GIF version | ||
| Description: A closed version of spcgf 3570. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimgfi1.1 | ⊢ Ⅎ𝑥𝜓 |
| spcimgfi1.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| spcgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | imim2i 16 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜑 → 𝜓))) |
| 3 | 2 | alimi 1811 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) |
| 4 | spcimgfi1.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | spcimgfi1.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | spcimgfi1 3526 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| 7 | 3, 6 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2727 df-clel 2809 df-nfc 2885 |
| This theorem is referenced by: spcgf 3570 rspct 3587 |
| Copyright terms: Public domain | W3C validator |