MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimgfi1OLD Structured version   Visualization version   GIF version

Theorem spcimgfi1OLD 3503
Description: Obsolete version of spcimgfi1 3502 as of 27-Jul-2025. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
spcimgfi1.1 𝑥𝜓
spcimgfi1.2 𝑥𝐴
Assertion
Ref Expression
spcimgfi1OLD (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))

Proof of Theorem spcimgfi1OLD
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝐵𝐴 ∈ V)
2 spcimgfi1.2 . . . . 5 𝑥𝐴
32issetf 3453 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 exim 1835 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑𝜓)))
53, 4biimtrid 242 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑𝜓)))
6 spcimgfi1.1 . . . 4 𝑥𝜓
7619.36 2233 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
85, 7imbitrdi 251 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑𝜓)))
91, 8syl5 34 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator