| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimgfi1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of spcimgfi1 3502 as of 27-Jul-2025. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spcimgfi1.1 | ⊢ Ⅎ𝑥𝜓 |
| spcimgfi1.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| spcimgfi1OLD | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | spcimgfi1.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 3453 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | exim 1835 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑 → 𝜓))) | |
| 5 | 3, 4 | biimtrid 242 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑 → 𝜓))) |
| 6 | spcimgfi1.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 7 | 6 | 19.36 2233 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| 8 | 5, 7 | imbitrdi 251 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓))) |
| 9 | 1, 8 | syl5 34 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |