![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcimgf | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcimgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcimgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spcimgf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | spcimgf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | spcimgfi1 3547 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
4 | spcimgf.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
5 | 3, 4 | mpg 1794 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-cleq 2727 df-clel 2814 df-nfc 2890 |
This theorem is referenced by: spcimegf 3551 iooelexlt 37345 |
Copyright terms: Public domain | W3C validator |