Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcimgf | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcimgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcimgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spcimgf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | spcimgf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | spcimgft 3526 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
4 | spcimgf.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
5 | 3, 4 | mpg 1800 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 |
This theorem is referenced by: spcimegf 3529 iooelexlt 35533 |
Copyright terms: Public domain | W3C validator |