| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimgf | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimgf.1 | ⊢ Ⅎ𝑥𝐴 |
| spcimgf.2 | ⊢ Ⅎ𝑥𝜓 |
| spcimgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spcimgf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | spcimgf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | spcimgfi1 3531 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| 4 | spcimgf.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | mpg 1797 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 |
| This theorem is referenced by: spcimegf 3535 iooelexlt 37385 |
| Copyright terms: Public domain | W3C validator |