MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimgf Structured version   Visualization version   GIF version

Theorem spcimgf 3562
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcimgf (𝐴𝑉 → (∀𝑥𝜑𝜓))

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3 𝑥𝜓
2 spcimgf.1 . . 3 𝑥𝐴
31, 2spcimgfi1 3559 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
4 spcimgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1795 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by:  spcimegf  3563  iooelexlt  37328
  Copyright terms: Public domain W3C validator