![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srhmsubclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for srhmsubc 20595. (Contributed by AV, 19-Feb-2020.) |
Ref | Expression |
---|---|
srhmsubc.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
srhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
Ref | Expression |
---|---|
srhmsubclem1 | ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2816 | . . . 4 ⊢ (𝑟 = 𝑋 → (𝑟 ∈ Ring ↔ 𝑋 ∈ Ring)) | |
2 | srhmsubc.s | . . . 4 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
3 | 1, 2 | vtoclri 3571 | . . 3 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ Ring) |
4 | 3 | anim2i 616 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) |
5 | srhmsubc.c | . . 3 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
6 | 5 | elin2 4193 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆)) |
7 | elin 3960 | . 2 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
8 | 4, 6, 7 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∩ cin 3943 Ringcrg 20157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-v 3471 df-in 3951 |
This theorem is referenced by: srhmsubclem2 20593 srhmsubcALTVlem1 47298 |
Copyright terms: Public domain | W3C validator |