Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubclem1 Structured version   Visualization version   GIF version

Theorem srhmsubclem1 45304
Description: Lemma 1 for srhmsubc 45307. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
Assertion
Ref Expression
srhmsubclem1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
Distinct variable groups:   𝑆,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐶(𝑟)   𝑈(𝑟)

Proof of Theorem srhmsubclem1
StepHypRef Expression
1 eleq1 2825 . . . 4 (𝑟 = 𝑋 → (𝑟 ∈ Ring ↔ 𝑋 ∈ Ring))
2 srhmsubc.s . . . 4 𝑟𝑆 𝑟 ∈ Ring
31, 2vtoclri 3501 . . 3 (𝑋𝑆𝑋 ∈ Ring)
43anim2i 620 . 2 ((𝑋𝑈𝑋𝑆) → (𝑋𝑈𝑋 ∈ Ring))
5 srhmsubc.c . . 3 𝐶 = (𝑈𝑆)
65elin2 4111 . 2 (𝑋𝐶 ↔ (𝑋𝑈𝑋𝑆))
7 elin 3882 . 2 (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋𝑈𝑋 ∈ Ring))
84, 6, 73imtr4i 295 1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  cin 3865  Ringcrg 19562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-v 3410  df-in 3873
This theorem is referenced by:  srhmsubclem2  45305  srhmsubcALTVlem1  45323
  Copyright terms: Public domain W3C validator