MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srhmsubclem1 Structured version   Visualization version   GIF version

Theorem srhmsubclem1 20592
Description: Lemma 1 for srhmsubc 20595. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
Assertion
Ref Expression
srhmsubclem1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
Distinct variable groups:   𝑆,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐶(𝑟)   𝑈(𝑟)

Proof of Theorem srhmsubclem1
StepHypRef Expression
1 eleq1 2819 . . . 4 (𝑟 = 𝑋 → (𝑟 ∈ Ring ↔ 𝑋 ∈ Ring))
2 srhmsubc.s . . . 4 𝑟𝑆 𝑟 ∈ Ring
31, 2vtoclri 3540 . . 3 (𝑋𝑆𝑋 ∈ Ring)
43anim2i 617 . 2 ((𝑋𝑈𝑋𝑆) → (𝑋𝑈𝑋 ∈ Ring))
5 srhmsubc.c . . 3 𝐶 = (𝑈𝑆)
65elin2 4150 . 2 (𝑋𝐶 ↔ (𝑋𝑈𝑋𝑆))
7 elin 3913 . 2 (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋𝑈𝑋 ∈ Ring))
84, 6, 73imtr4i 292 1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3896  Ringcrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-in 3904
This theorem is referenced by:  srhmsubclem2  20593  srhmsubcALTVlem1  48433
  Copyright terms: Public domain W3C validator