| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srhmsubclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for srhmsubc 20595. (Contributed by AV, 19-Feb-2020.) |
| Ref | Expression |
|---|---|
| srhmsubc.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
| srhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
| Ref | Expression |
|---|---|
| srhmsubclem1 | ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑟 = 𝑋 → (𝑟 ∈ Ring ↔ 𝑋 ∈ Ring)) | |
| 2 | srhmsubc.s | . . . 4 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 3 | 1, 2 | vtoclri 3540 | . . 3 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ Ring) |
| 4 | 3 | anim2i 617 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) |
| 5 | srhmsubc.c | . . 3 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
| 6 | 5 | elin2 4150 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆)) |
| 7 | elin 3913 | . 2 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring)) | |
| 8 | 4, 6, 7 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 Ringcrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-in 3904 |
| This theorem is referenced by: srhmsubclem2 20593 srhmsubcALTVlem1 48433 |
| Copyright terms: Public domain | W3C validator |