MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srhmsubc Structured version   Visualization version   GIF version

Theorem srhmsubc 20593
Description: According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
srhmsubc.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubc (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubc.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1w 2814 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubc.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3545 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3938 . . . . 5 𝑆 ⊆ Ring
6 sslin 4193 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7eqsstrid 3973 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3957 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2731 . . . . . . 7 (RingCat‘𝑈) = (RingCat‘𝑈)
11 eqid 2731 . . . . . . 7 (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈))
12 simpl 482 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2731 . . . . . . 7 (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈))
143, 1srhmsubclem2 20591 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
1514adantrr 717 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
163, 1srhmsubclem2 20591 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1716adantrl 716 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1810, 11, 12, 13, 15, 17ringchom 20565 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18sseqtrrid 3978 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
20 srhmsubc.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 7355 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 770 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 772 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovexd 7381 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2721, 23, 24, 25, 26ovmpod 7498 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
28 eqid 2731 . . . . . 6 (Homf ‘(RingCat‘𝑈)) = (Homf ‘(RingCat‘𝑈))
2928, 11, 13, 15, 17homfval 17595 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCat‘𝑈))𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
3019, 27, 293sstr4d 3990 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
3130ralrimivva 3175 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
32 ovex 7379 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3320, 32fnmpoi 8002 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3433a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3528, 11homffn 17596 . . . . 5 (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))
36 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3710, 11, 36ringcbas 20563 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
3837eqcomd 2737 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCat‘𝑈)))
3938sqxpeqd 5648 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))
4039fneq2d 6575 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))))
4135, 40mpbiri 258 . . . 4 (𝑈𝑉 → (Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
42 inex1g 5257 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4334, 41, 42isssc 17724 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCat‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))))
448, 31, 43mpbir2and 713 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCat‘𝑈)))
451elin2 4153 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
464adantl 481 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4745, 46sylbi 217 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4847adantl 481 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
49 eqid 2731 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5049idrhm 20405 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5148, 50syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
52 eqid 2731 . . . . . 6 (Id‘(RingCat‘𝑈)) = (Id‘(RingCat‘𝑈))
53 simpl 482 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5410, 11, 52, 53, 14, 49ringcid 20577 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5520a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
56 oveq12 7355 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5756adantl 481 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
58 simpr 484 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
59 ovexd 7381 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6055, 57, 58, 58, 59ovmpod 7498 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6151, 54, 603eltr4d 2846 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
62 eqid 2731 . . . . . . . . 9 (comp‘(RingCat‘𝑈)) = (comp‘(RingCat‘𝑈))
6310ringccat 20576 . . . . . . . . . 10 (𝑈𝑉 → (RingCat‘𝑈) ∈ Cat)
6463ad3antrrr 730 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCat‘𝑈) ∈ Cat)
6514adantr 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6665adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6716ad2ant2r 747 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
6867adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
693, 1srhmsubclem2 20591 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7069ad2ant2rl 749 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7170adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7253adantr 480 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
73 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7458, 73anim12i 613 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7572, 74jca 511 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
763, 1, 20srhmsubclem3 20592 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
7877eleq2d 2817 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
7978biimpcd 249 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8079adantr 480 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8180impcom 407 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
823, 1, 20srhmsubclem3 20592 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8382adantlr 715 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8483eleq2d 2817 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8584biimpd 229 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8685adantld 490 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8786imp 406 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8811, 13, 62, 64, 66, 68, 71, 81, 87catcocl 17588 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
8910, 11, 72, 13, 65, 70ringchom 20565 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9089eqcomd 2737 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9190adantr 480 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9288, 91eleqtrrd 2834 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9320a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
94 oveq12 7355 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9594adantl 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9658adantr 480 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
97 simprr 772 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
98 ovexd 7381 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
9993, 95, 96, 97, 98ovmpod 7498 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10099adantr 480 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10192, 100eleqtrrd 2834 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
102101ralrimivva 3175 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
103102ralrimivva 3175 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10461, 103jca 511 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
105104ralrimiva 3124 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10628, 52, 62, 63, 34issubc2 17740 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCat‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
10744, 105, 106mpbir2and 713 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902  cop 4582   class class class wbr 5091   I cid 5510   × cxp 5614  cres 5618   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568  Homf chomf 17569  cat cssc 17711  Subcatcsubc 17713  Ringcrg 20149   RingHom crh 20385  RingCatcringc 20558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-hom 17182  df-cco 17183  df-0g 17342  df-cat 17571  df-cid 17572  df-homf 17573  df-ssc 17714  df-resc 17715  df-subc 17716  df-estrc 18026  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-grp 18846  df-ghm 19123  df-mgp 20057  df-ur 20098  df-ring 20151  df-rhm 20388  df-ringc 20559
This theorem is referenced by:  sringcat  20594  crhmsubc  20595  drhmsubc  20694  fldhmsubc  20698
  Copyright terms: Public domain W3C validator