Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubc Structured version   Visualization version   GIF version

Theorem srhmsubc 42645
Description: According to df-subc 16679, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16707 and subcss2 16710). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
srhmsubc.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubc (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubc.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1w 2875 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubc.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3483 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3809 . . . . 5 𝑆 ⊆ Ring
6 sslin 4042 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7syl5eqss 3853 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3827 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2813 . . . . . . 7 (RingCat‘𝑈) = (RingCat‘𝑈)
11 eqid 2813 . . . . . . 7 (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈))
12 simpl 470 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2813 . . . . . . 7 (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈))
143, 1srhmsubclem2 42643 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
1514adantrr 699 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
163, 1srhmsubclem2 42643 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1716adantrl 698 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1810, 11, 12, 13, 15, 17ringchom 42582 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18syl5sseqr 3858 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
20 srhmsubc.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6886 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 469 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 778 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 780 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovexd 6911 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2721, 23, 24, 25, 26ovmpt2d 7021 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
28 eqid 2813 . . . . . 6 (Homf ‘(RingCat‘𝑈)) = (Homf ‘(RingCat‘𝑈))
2928, 11, 13, 15, 17homfval 16559 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCat‘𝑈))𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
3019, 27, 293sstr4d 3852 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
3130ralrimivva 3166 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
32 ovex 6909 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3320, 32fnmpt2i 7475 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3433a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3528, 11homffn 16560 . . . . 5 (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))
36 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3710, 11, 36ringcbas 42580 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
3837eqcomd 2819 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCat‘𝑈)))
3938sqxpeqd 5349 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))
4039fneq2d 6196 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))))
4135, 40mpbiri 249 . . . 4 (𝑈𝑉 → (Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
42 inex1g 5003 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4334, 41, 42isssc 16687 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCat‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))))
448, 31, 43mpbir2and 695 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCat‘𝑈)))
451elin2 4007 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
464adantl 469 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4745, 46sylbi 208 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4847adantl 469 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
49 eqid 2813 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5049idrhm 18938 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5148, 50syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
52 eqid 2813 . . . . . 6 (Id‘(RingCat‘𝑈)) = (Id‘(RingCat‘𝑈))
53 simpl 470 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5410, 11, 52, 53, 14, 49ringcid 42594 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5520a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
56 oveq12 6886 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5756adantl 469 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
58 simpr 473 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
59 ovexd 6911 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6055, 57, 58, 58, 59ovmpt2d 7021 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6151, 54, 603eltr4d 2907 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
62 eqid 2813 . . . . . . . . 9 (comp‘(RingCat‘𝑈)) = (comp‘(RingCat‘𝑈))
6310ringccat 42593 . . . . . . . . . 10 (𝑈𝑉 → (RingCat‘𝑈) ∈ Cat)
6463ad3antrrr 712 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCat‘𝑈) ∈ Cat)
6514adantr 468 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6665adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6716ad2ant2r 744 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
6867adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
693, 1srhmsubclem2 42643 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7069ad2ant2rl 746 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7170adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7253adantr 468 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
73 simpl 470 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7458, 73anim12i 602 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7572, 74jca 503 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
763, 1, 20srhmsubclem3 42644 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
7877eleq2d 2878 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
7978biimpcd 240 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8079adantr 468 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8180impcom 396 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
823, 1, 20srhmsubclem3 42644 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8382adantlr 697 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8483eleq2d 2878 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8584biimpd 220 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8685adantld 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8786imp 395 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8811, 13, 62, 64, 66, 68, 71, 81, 87catcocl 16553 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
8910, 11, 72, 13, 65, 70ringchom 42582 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9089eqcomd 2819 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9190adantr 468 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9288, 91eleqtrrd 2895 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9320a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
94 oveq12 6886 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9594adantl 469 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9658adantr 468 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
97 simprr 780 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
98 ovexd 6911 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
9993, 95, 96, 97, 98ovmpt2d 7021 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10099adantr 468 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10192, 100eleqtrrd 2895 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
102101ralrimivva 3166 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
103102ralrimivva 3166 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10461, 103jca 503 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
105104ralrimiva 3161 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10628, 52, 62, 63, 34issubc2 16703 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCat‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
10744, 105, 106mpbir2and 695 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wral 3103  Vcvv 3398  cin 3775  wss 3776  cop 4383   class class class wbr 4851   I cid 5225   × cxp 5316  cres 5320   Fn wfn 6099  cfv 6104  (class class class)co 6877  cmpt2 6879  Basecbs 16071  Hom chom 16167  compcco 16168  Catccat 16532  Idccid 16533  Homf chomf 16534  cat cssc 16674  Subcatcsubc 16676  Ringcrg 18752   RingHom crh 18919  RingCatcringc 42572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-fz 12553  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-hom 16180  df-cco 16181  df-0g 16310  df-cat 16536  df-cid 16537  df-homf 16538  df-ssc 16677  df-resc 16678  df-subc 16679  df-estrc 16970  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-ghm 17863  df-mgp 18695  df-ur 18707  df-ring 18754  df-rnghom 18922  df-ringc 42574
This theorem is referenced by:  sringcat  42646  crhmsubc  42647  drhmsubc  42649  fldhmsubc  42653
  Copyright terms: Public domain W3C validator