Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > srhmsubcALTVlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for srhmsubcALTV 45113. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
srhmsubcALTV.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
srhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
Ref | Expression |
---|---|
srhmsubcALTVlem1 | ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srhmsubcALTV.s | . . . 4 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
2 | srhmsubcALTV.c | . . . 4 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
3 | 1, 2 | srhmsubclem1 45092 | . . 3 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) |
4 | 3 | adantl 485 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (𝑈 ∩ Ring)) |
5 | eqid 2758 | . . . 4 ⊢ (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈) | |
6 | eqid 2758 | . . . 4 ⊢ (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈)) | |
7 | id 22 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉) | |
8 | 5, 6, 7 | ringcbasALTV 45065 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring)) |
9 | 8 | adantr 484 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring)) |
10 | 4, 9 | eleqtrrd 2855 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∩ cin 3859 ‘cfv 6339 Basecbs 16546 Ringcrg 19370 RingCatALTVcringcALTV 45023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-hom 16652 df-cco 16653 df-ringcALTV 45025 |
This theorem is referenced by: srhmsubcALTVlem2 45112 srhmsubcALTV 45113 |
Copyright terms: Public domain | W3C validator |