| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
| Ref | Expression |
|---|---|
| vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
| 3 | 2 | rspec 3237 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| 4 | 1, 3 | vtoclga 3561 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 |
| This theorem is referenced by: alephreg 10601 arch 12503 srhmsubclem1 20642 srhmsubc 20645 harmonicbnd 26971 harmonicbnd2 26972 nbgrnself2 29344 heiborlem8 37847 fourierdlem62 46164 natglobalincr 46873 srhmsubcALTV 48267 |
| Copyright terms: Public domain | W3C validator |