Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
Ref | Expression |
---|---|
vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
3 | 2 | rspec 3129 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
4 | 1, 3 | vtoclga 3489 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 |
This theorem is referenced by: alephreg 10196 arch 12087 harmonicbnd 25886 harmonicbnd2 25887 nbgrnself2 27448 heiborlem8 35713 fourierdlem62 43384 srhmsubclem1 45304 srhmsubc 45307 srhmsubcALTV 45325 |
Copyright terms: Public domain | W3C validator |