MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclri Structured version   Visualization version   GIF version

Theorem vtoclri 3525
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclri.2 𝑥𝐵 𝜑
Assertion
Ref Expression
vtoclri (𝐴𝐵𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
2 vtoclri.2 . . 3 𝑥𝐵 𝜑
32rspec 3133 . 2 (𝑥𝐵𝜑)
41, 3vtoclga 3513 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069
This theorem is referenced by:  alephreg  10338  arch  12230  harmonicbnd  26153  harmonicbnd2  26154  nbgrnself2  27727  heiborlem8  35976  fourierdlem62  43709  srhmsubclem1  45631  srhmsubc  45634  srhmsubcALTV  45652  natglobalincr  46512
  Copyright terms: Public domain W3C validator