MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclri Structured version   Visualization version   GIF version

Theorem vtoclri 3556
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclri.2 𝑥𝐵 𝜑
Assertion
Ref Expression
vtoclri (𝐴𝐵𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
2 vtoclri.2 . . 3 𝑥𝐵 𝜑
32rspec 3228 . 2 (𝑥𝐵𝜑)
41, 3vtoclga 3543 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045
This theorem is referenced by:  alephreg  10535  arch  12439  srhmsubclem1  20586  srhmsubc  20589  harmonicbnd  26914  harmonicbnd2  26915  nbgrnself2  29287  heiborlem8  37812  fourierdlem62  46166  natglobalincr  46875  srhmsubcALTV  48310
  Copyright terms: Public domain W3C validator