![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
Ref | Expression |
---|---|
vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
3 | 2 | rspec 3248 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
4 | 1, 3 | vtoclga 3577 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 |
This theorem is referenced by: alephreg 10620 arch 12521 srhmsubclem1 20694 srhmsubc 20697 harmonicbnd 27062 harmonicbnd2 27063 nbgrnself2 29392 heiborlem8 37805 fourierdlem62 46124 natglobalincr 46831 srhmsubcALTV 48169 |
Copyright terms: Public domain | W3C validator |