MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclri Structured version   Visualization version   GIF version

Theorem vtoclri 3540
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclri.2 𝑥𝐵 𝜑
Assertion
Ref Expression
vtoclri (𝐴𝐵𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
2 vtoclri.2 . . 3 𝑥𝐵 𝜑
32rspec 3223 . 2 (𝑥𝐵𝜑)
41, 3vtoclga 3528 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048
This theorem is referenced by:  alephreg  10473  arch  12378  srhmsubclem1  20592  srhmsubc  20595  harmonicbnd  26941  harmonicbnd2  26942  nbgrnself2  29338  heiborlem8  37868  fourierdlem62  46276  natglobalincr  46985  srhmsubcALTV  48435
  Copyright terms: Public domain W3C validator