|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 | 
| Ref | Expression | 
|---|---|
| vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
| 3 | 2 | rspec 3249 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | 
| 4 | 1, 3 | vtoclga 3576 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 | 
| This theorem is referenced by: alephreg 10623 arch 12525 srhmsubclem1 20678 srhmsubc 20681 harmonicbnd 27048 harmonicbnd2 27049 nbgrnself2 29378 heiborlem8 37826 fourierdlem62 46188 natglobalincr 46897 srhmsubcALTV 48246 | 
| Copyright terms: Public domain | W3C validator |