Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
Ref | Expression |
---|---|
vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
3 | 2 | rspec 3131 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
4 | 1, 3 | vtoclga 3503 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: alephreg 10269 arch 12160 harmonicbnd 26058 harmonicbnd2 26059 nbgrnself2 27630 heiborlem8 35903 fourierdlem62 43599 srhmsubclem1 45519 srhmsubc 45522 srhmsubcALTV 45540 |
Copyright terms: Public domain | W3C validator |