![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclri | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
Ref | Expression |
---|---|
vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
3 | 2 | rspec 3256 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
4 | 1, 3 | vtoclga 3589 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: alephreg 10651 arch 12550 srhmsubclem1 20699 srhmsubc 20702 harmonicbnd 27065 harmonicbnd2 27066 nbgrnself2 29395 heiborlem8 37778 fourierdlem62 46089 natglobalincr 46796 srhmsubcALTV 48048 |
Copyright terms: Public domain | W3C validator |