| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrninitoringc | Structured version Visualization version GIF version | ||
| Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| zrtermoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| zrtermoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| zrtermoringc.z | ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) |
| zrtermoringc.e | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| zrninitoringc.e | ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) |
| Ref | Expression |
|---|---|
| zrninitoringc | ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrninitoringc.e | . . . 4 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) | |
| 2 | zrtermoringc.c | . . . . . . . . . . 11 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 3 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | zrtermoringc.u | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 5 | 4 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑈 ∈ 𝑉) |
| 6 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | zrtermoringc.e | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 8 | zrtermoringc.z | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) | |
| 9 | 8 | eldifad 3917 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 10 | 7, 9 | elind 4153 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Ring)) |
| 11 | 2, 3, 4 | ringcbas 20553 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 12 | 10, 11 | eleqtrrd 2831 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑍 ∈ (Base‘𝐶)) |
| 14 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑟 ∈ (Base‘𝐶)) | |
| 15 | 2, 3, 5, 6, 13, 14 | ringchom 20555 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RingHom 𝑟)) |
| 16 | 8 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing)) |
| 17 | nrhmzr 20440 | . . . . . . . . . . 11 ⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) | |
| 18 | 16, 17 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) |
| 19 | 15, 18 | eqtrd 2764 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = ∅) |
| 20 | eq0 4303 | . . . . . . . . 9 ⊢ ((𝑍(Hom ‘𝐶)𝑟) = ∅ ↔ ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 22 | alnex 1781 | . . . . . . . 8 ⊢ (∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 24 | euex 2570 | . . . . . . 7 ⊢ (∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) → ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 25 | 23, 24 | nsyl 140 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑟 ∈ NzRing → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 27 | 26 | reximdva 3142 | . . . 4 ⊢ (𝜑 → (∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 28 | 1, 27 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 29 | rexnal 3081 | . . 3 ⊢ (∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 31 | df-nel 3030 | . . 3 ⊢ (𝑍 ∉ (InitO‘𝐶) ↔ ¬ 𝑍 ∈ (InitO‘𝐶)) | |
| 32 | 2 | ringccat 20566 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 33 | 4, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 34 | 3, 6, 33, 12 | isinito 17921 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 35 | 34 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ 𝑍 ∈ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 36 | 31, 35 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑍 ∉ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 37 | 30, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Catccat 17588 InitOcinito 17906 Ringcrg 20136 RingHom crh 20372 NzRingcnzr 20415 RingCatcringc 20548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-hom 17203 df-cco 17204 df-0g 17363 df-cat 17592 df-cid 17593 df-homf 17594 df-ssc 17735 df-resc 17736 df-subc 17737 df-inito 17909 df-estrc 18047 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-rhm 20375 df-nzr 20416 df-ringc 20549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |