Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrninitoringc Structured version   Visualization version   GIF version

Theorem zrninitoringc 44349
Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (𝜑𝑈𝑉)
zrtermoringc.c 𝐶 = (RingCat‘𝑈)
zrtermoringc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrtermoringc.e (𝜑𝑍𝑈)
zrninitoringc.e (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing)
Assertion
Ref Expression
zrninitoringc (𝜑𝑍 ∉ (InitO‘𝐶))
Distinct variable groups:   𝐶,𝑟   𝑍,𝑟   𝜑,𝑟
Allowed substitution hints:   𝑈(𝑟)   𝑉(𝑟)

Proof of Theorem zrninitoringc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 zrninitoringc.e . . . 4 (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing)
2 zrtermoringc.c . . . . . . . . . . 11 𝐶 = (RingCat‘𝑈)
3 eqid 2824 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
4 zrtermoringc.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
54ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑈𝑉)
6 eqid 2824 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
7 zrtermoringc.e . . . . . . . . . . . . . 14 (𝜑𝑍𝑈)
8 zrtermoringc.z . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ (Ring ∖ NzRing))
98eldifad 3951 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
107, 9elind 4174 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
112, 3, 4ringcbas 44289 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
1210, 11eleqtrrd 2919 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (Base‘𝐶))
1312ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑍 ∈ (Base‘𝐶))
14 simplr 767 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑟 ∈ (Base‘𝐶))
152, 3, 5, 6, 13, 14ringchom 44291 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RingHom 𝑟))
168adantr 483 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
17 nrhmzr 44151 . . . . . . . . . . 11 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅)
1816, 17sylan 582 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅)
1915, 18eqtrd 2859 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = ∅)
20 eq0 4311 . . . . . . . . 9 ((𝑍(Hom ‘𝐶)𝑟) = ∅ ↔ ∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟))
2119, 20sylib 220 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟))
22 alnex 1781 . . . . . . . 8 (∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
2321, 22sylib 220 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
24 euex 2661 . . . . . . 7 (∃! ∈ (𝑍(Hom ‘𝐶)𝑟) → ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
2523, 24nsyl 142 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
2625ex 415 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 ∈ NzRing → ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
2726reximdva 3277 . . . 4 (𝜑 → (∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
281, 27mpd 15 . . 3 (𝜑 → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
29 rexnal 3241 . . 3 (∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
3028, 29sylib 220 . 2 (𝜑 → ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
31 df-nel 3127 . . 3 (𝑍 ∉ (InitO‘𝐶) ↔ ¬ 𝑍 ∈ (InitO‘𝐶))
322ringccat 44302 . . . . . 6 (𝑈𝑉𝐶 ∈ Cat)
334, 32syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
343, 6, 33, 12isinito 17263 . . . 4 (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3534notbid 320 . . 3 (𝜑 → (¬ 𝑍 ∈ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3631, 35syl5bb 285 . 2 (𝜑 → (𝑍 ∉ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3730, 36mpbird 259 1 (𝜑𝑍 ∉ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  ∃!weu 2652  wnel 3126  wral 3141  wrex 3142  cdif 3936  cin 3938  c0 4294  cfv 6358  (class class class)co 7159  Basecbs 16486  Hom chom 16579  Catccat 16938  InitOcinito 17251  Ringcrg 19300   RingHom crh 19467  NzRingcnzr 20033  RingCatcringc 44281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-hom 16592  df-cco 16593  df-0g 16718  df-cat 16942  df-cid 16943  df-homf 16944  df-ssc 17083  df-resc 17084  df-subc 17085  df-inito 17254  df-estrc 17376  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-grp 18109  df-minusg 18110  df-ghm 18359  df-mgp 19243  df-ur 19255  df-ring 19302  df-rnghom 19470  df-nzr 20034  df-ringc 44283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator