| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrninitoringc | Structured version Visualization version GIF version | ||
| Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| zrtermoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| zrtermoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| zrtermoringc.z | ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) |
| zrtermoringc.e | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| zrninitoringc.e | ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) |
| Ref | Expression |
|---|---|
| zrninitoringc | ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrninitoringc.e | . . . 4 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) | |
| 2 | zrtermoringc.c | . . . . . . . . . . 11 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 3 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | zrtermoringc.u | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 5 | 4 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑈 ∈ 𝑉) |
| 6 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | zrtermoringc.e | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 8 | zrtermoringc.z | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) | |
| 9 | 8 | eldifad 3914 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 10 | 7, 9 | elind 4150 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Ring)) |
| 11 | 2, 3, 4 | ringcbas 20566 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 12 | 10, 11 | eleqtrrd 2834 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑍 ∈ (Base‘𝐶)) |
| 14 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑟 ∈ (Base‘𝐶)) | |
| 15 | 2, 3, 5, 6, 13, 14 | ringchom 20568 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RingHom 𝑟)) |
| 16 | 8 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing)) |
| 17 | nrhmzr 20453 | . . . . . . . . . . 11 ⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) | |
| 18 | 16, 17 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) |
| 19 | 15, 18 | eqtrd 2766 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = ∅) |
| 20 | eq0 4300 | . . . . . . . . 9 ⊢ ((𝑍(Hom ‘𝐶)𝑟) = ∅ ↔ ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 22 | alnex 1782 | . . . . . . . 8 ⊢ (∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 24 | euex 2572 | . . . . . . 7 ⊢ (∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) → ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 25 | 23, 24 | nsyl 140 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑟 ∈ NzRing → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 27 | 26 | reximdva 3145 | . . . 4 ⊢ (𝜑 → (∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 28 | 1, 27 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 29 | rexnal 3084 | . . 3 ⊢ (∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 31 | df-nel 3033 | . . 3 ⊢ (𝑍 ∉ (InitO‘𝐶) ↔ ¬ 𝑍 ∈ (InitO‘𝐶)) | |
| 32 | 2 | ringccat 20579 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 33 | 4, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 34 | 3, 6, 33, 12 | isinito 17903 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 35 | 34 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ 𝑍 ∈ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 36 | 31, 35 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑍 ∉ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 37 | 30, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 ∉ wnel 3032 ∀wral 3047 ∃wrex 3056 ∖ cdif 3899 ∩ cin 3901 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 InitOcinito 17888 Ringcrg 20152 RingHom crh 20388 NzRingcnzr 20428 RingCatcringc 20561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-inito 17891 df-estrc 18029 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-rhm 20391 df-nzr 20429 df-ringc 20562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |