| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrninitoringc | Structured version Visualization version GIF version | ||
| Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| zrtermoringc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| zrtermoringc.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| zrtermoringc.z | ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) |
| zrtermoringc.e | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| zrninitoringc.e | ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) |
| Ref | Expression |
|---|---|
| zrninitoringc | ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrninitoringc.e | . . . 4 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) | |
| 2 | zrtermoringc.c | . . . . . . . . . . 11 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 3 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | zrtermoringc.u | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 5 | 4 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑈 ∈ 𝑉) |
| 6 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | zrtermoringc.e | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 8 | zrtermoringc.z | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) | |
| 9 | 8 | eldifad 3929 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 10 | 7, 9 | elind 4166 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Ring)) |
| 11 | 2, 3, 4 | ringcbas 20566 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 12 | 10, 11 | eleqtrrd 2832 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑍 ∈ (Base‘𝐶)) |
| 14 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑟 ∈ (Base‘𝐶)) | |
| 15 | 2, 3, 5, 6, 13, 14 | ringchom 20568 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RingHom 𝑟)) |
| 16 | 8 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing)) |
| 17 | nrhmzr 20453 | . . . . . . . . . . 11 ⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) | |
| 18 | 16, 17 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅) |
| 19 | 15, 18 | eqtrd 2765 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = ∅) |
| 20 | eq0 4316 | . . . . . . . . 9 ⊢ ((𝑍(Hom ‘𝐶)𝑟) = ∅ ↔ ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 22 | alnex 1781 | . . . . . . . 8 ⊢ (∀ℎ ¬ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 24 | euex 2571 | . . . . . . 7 ⊢ (∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) → ∃ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 25 | 23, 24 | nsyl 140 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑟 ∈ NzRing → ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 27 | 26 | reximdva 3147 | . . . 4 ⊢ (𝜑 → (∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 28 | 1, 27 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 29 | rexnal 3083 | . . 3 ⊢ (∃𝑟 ∈ (Base‘𝐶) ¬ ∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟)) |
| 31 | df-nel 3031 | . . 3 ⊢ (𝑍 ∉ (InitO‘𝐶) ↔ ¬ 𝑍 ∈ (InitO‘𝐶)) | |
| 32 | 2 | ringccat 20579 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 33 | 4, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 34 | 3, 6, 33, 12 | isinito 17965 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 35 | 34 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ 𝑍 ∈ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 36 | 31, 35 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑍 ∉ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑍(Hom ‘𝐶)𝑟))) |
| 37 | 30, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 ∉ wnel 3030 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Catccat 17632 InitOcinito 17950 Ringcrg 20149 RingHom crh 20385 NzRingcnzr 20428 RingCatcringc 20561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-hom 17251 df-cco 17252 df-0g 17411 df-cat 17636 df-cid 17637 df-homf 17638 df-ssc 17779 df-resc 17780 df-subc 17781 df-inito 17953 df-estrc 18091 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-rhm 20388 df-nzr 20429 df-ringc 20562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |