Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjabso Structured version   Visualization version   GIF version

Theorem disjabso 44958
Description: Disjointness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
disjabso ((Tr 𝑀𝐴𝑀) → ((𝐴𝐵) = ∅ ↔ ∀𝑥𝑀 (𝑥𝐴 → ¬ 𝑥𝐵)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disjabso
StepHypRef Expression
1 disj 4415 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 ralabso 44951 . 2 ((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴 → ¬ 𝑥𝐵)))
31, 2bitrid 283 1 ((Tr 𝑀𝐴𝑀) → ((𝐴𝐵) = ∅ ↔ ∀𝑥𝑀 (𝑥𝐴 → ¬ 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3915  c0 4298  Tr wtr 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-dif 3919  df-in 3923  df-ss 3933  df-nul 4299  df-uni 4874  df-tr 5217
This theorem is referenced by:  modelac8prim  44975
  Copyright terms: Public domain W3C validator