Proof of Theorem pwclaxpow
| Step | Hyp | Ref
| Expression |
| 1 | | velpw 4603 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥) |
| 2 | | ssabso 44964 |
. . . . . . . 8
⊢ ((Tr
𝑀 ∧ 𝑧 ∈ 𝑀) → (𝑧 ⊆ 𝑥 ↔ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥))) |
| 3 | 1, 2 | bitrid 283 |
. . . . . . 7
⊢ ((Tr
𝑀 ∧ 𝑧 ∈ 𝑀) → (𝑧 ∈ 𝒫 𝑥 ↔ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥))) |
| 4 | | elin 3966 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝑥 ∩ 𝑀) ↔ (𝑧 ∈ 𝒫 𝑥 ∧ 𝑧 ∈ 𝑀)) |
| 5 | 4 | simplbi2com 502 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝒫 𝑥 → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) |
| 6 | 5 | adantl 481 |
. . . . . . 7
⊢ ((Tr
𝑀 ∧ 𝑧 ∈ 𝑀) → (𝑧 ∈ 𝒫 𝑥 → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) |
| 7 | 3, 6 | sylbird 260 |
. . . . . 6
⊢ ((Tr
𝑀 ∧ 𝑧 ∈ 𝑀) → (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) |
| 8 | 7 | ralrimiva 3145 |
. . . . 5
⊢ (Tr 𝑀 → ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) |
| 9 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝑦 = (𝒫 𝑥 ∩ 𝑀) → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) |
| 10 | 9 | imbi2d 340 |
. . . . . . 7
⊢ (𝑦 = (𝒫 𝑥 ∩ 𝑀) → ((∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀)))) |
| 11 | 10 | ralbidv 3177 |
. . . . . 6
⊢ (𝑦 = (𝒫 𝑥 ∩ 𝑀) → (∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀)))) |
| 12 | 11 | rspcev 3621 |
. . . . 5
⊢
(((𝒫 𝑥 ∩
𝑀) ∈ 𝑀 ∧ ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ (𝒫 𝑥 ∩ 𝑀))) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 13 | 8, 12 | sylan2 593 |
. . . 4
⊢
(((𝒫 𝑥 ∩
𝑀) ∈ 𝑀 ∧ Tr 𝑀) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 14 | 13 | expcom 413 |
. . 3
⊢ (Tr 𝑀 → ((𝒫 𝑥 ∩ 𝑀) ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦))) |
| 15 | 14 | ralimdv 3168 |
. 2
⊢ (Tr 𝑀 → (∀𝑥 ∈ 𝑀 (𝒫 𝑥 ∩ 𝑀) ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦))) |
| 16 | 15 | imp 406 |
1
⊢ ((Tr
𝑀 ∧ ∀𝑥 ∈ 𝑀 (𝒫 𝑥 ∩ 𝑀) ∈ 𝑀) → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |