Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwclaxpow Structured version   Visualization version   GIF version

Theorem pwclaxpow 44967
Description: Suppose 𝑀 is a transitive class that is closed under power sets intersected with 𝑀. Then, 𝑀 models the Axiom of Power Sets ax-pow 5322. One direction of Lemma II.2.8 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
pwclaxpow ((Tr 𝑀 ∧ ∀𝑥𝑀 (𝒫 𝑥𝑀) ∈ 𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑀

Proof of Theorem pwclaxpow
StepHypRef Expression
1 velpw 4570 . . . . . . . 8 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
2 ssabso 44957 . . . . . . . 8 ((Tr 𝑀𝑧𝑀) → (𝑧𝑥 ↔ ∀𝑤𝑀 (𝑤𝑧𝑤𝑥)))
31, 2bitrid 283 . . . . . . 7 ((Tr 𝑀𝑧𝑀) → (𝑧 ∈ 𝒫 𝑥 ↔ ∀𝑤𝑀 (𝑤𝑧𝑤𝑥)))
4 elin 3932 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑥𝑀) ↔ (𝑧 ∈ 𝒫 𝑥𝑧𝑀))
54simplbi2com 502 . . . . . . . 8 (𝑧𝑀 → (𝑧 ∈ 𝒫 𝑥𝑧 ∈ (𝒫 𝑥𝑀)))
65adantl 481 . . . . . . 7 ((Tr 𝑀𝑧𝑀) → (𝑧 ∈ 𝒫 𝑥𝑧 ∈ (𝒫 𝑥𝑀)))
73, 6sylbird 260 . . . . . 6 ((Tr 𝑀𝑧𝑀) → (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧 ∈ (𝒫 𝑥𝑀)))
87ralrimiva 3126 . . . . 5 (Tr 𝑀 → ∀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧 ∈ (𝒫 𝑥𝑀)))
9 eleq2 2818 . . . . . . . 8 (𝑦 = (𝒫 𝑥𝑀) → (𝑧𝑦𝑧 ∈ (𝒫 𝑥𝑀)))
109imbi2d 340 . . . . . . 7 (𝑦 = (𝒫 𝑥𝑀) → ((∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦) ↔ (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧 ∈ (𝒫 𝑥𝑀))))
1110ralbidv 3157 . . . . . 6 (𝑦 = (𝒫 𝑥𝑀) → (∀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦) ↔ ∀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧 ∈ (𝒫 𝑥𝑀))))
1211rspcev 3591 . . . . 5 (((𝒫 𝑥𝑀) ∈ 𝑀 ∧ ∀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧 ∈ (𝒫 𝑥𝑀))) → ∃𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
138, 12sylan2 593 . . . 4 (((𝒫 𝑥𝑀) ∈ 𝑀 ∧ Tr 𝑀) → ∃𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
1413expcom 413 . . 3 (Tr 𝑀 → ((𝒫 𝑥𝑀) ∈ 𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)))
1514ralimdv 3148 . 2 (Tr 𝑀 → (∀𝑥𝑀 (𝒫 𝑥𝑀) ∈ 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)))
1615imp 406 1 ((Tr 𝑀 ∧ ∀𝑥𝑀 (𝒫 𝑥𝑀) ∈ 𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3915  wss 3916  𝒫 cpw 4565  Tr wtr 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-in 3923  df-ss 3933  df-pw 4567  df-uni 4874  df-tr 5217
This theorem is referenced by:  wfaxpow  44980
  Copyright terms: Public domain W3C validator