MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvd00 Structured version   Visualization version   GIF version

Theorem uhgrvd00 29570
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvd00 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem uhgrvd00
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdusgradjvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2740 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3vtxduhgr0edgnel 29530 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒𝐸 𝑣𝑒))
5 ralnex 3078 . . . 4 (∀𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸 𝑣𝑒)
64, 5bitr4di 289 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒𝐸 ¬ 𝑣𝑒))
76ralbidva 3182 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒))
8 ralcom 3295 . . . . 5 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒)
9 ralnex2 3139 . . . . 5 (∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
108, 9bitri 275 . . . 4 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
11 simpr 484 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒𝐸)
122eleq2i 2836 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 uhgredgn0 29163 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1412, 13sylan2b 593 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsn 4811 . . . . . . . . . . 11 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅))
16 elpwi 4629 . . . . . . . . . . . . 13 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
171sseq2i 4038 . . . . . . . . . . . . . 14 (𝑒𝑉𝑒 ⊆ (Vtx‘𝐺))
18 ssn0rex 4381 . . . . . . . . . . . . . . 15 ((𝑒𝑉𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
1918ex 412 . . . . . . . . . . . . . 14 (𝑒𝑉 → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2017, 19sylbir 235 . . . . . . . . . . . . 13 (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2116, 20syl 17 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2221imp 406 . . . . . . . . . . 11 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
2315, 22sylbi 217 . . . . . . . . . 10 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣𝑉 𝑣𝑒)
2414, 23syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → ∃𝑣𝑉 𝑣𝑒)
2511, 24jca 511 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
2625ex 412 . . . . . . 7 (𝐺 ∈ UHGraph → (𝑒𝐸 → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
2726eximdv 1916 . . . . . 6 (𝐺 ∈ UHGraph → (∃𝑒 𝑒𝐸 → ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
28 n0 4376 . . . . . 6 (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒𝐸)
29 df-rex 3077 . . . . . 6 (∃𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
3027, 28, 293imtr4g 296 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒𝐸𝑣𝑉 𝑣𝑒))
3130con3d 152 . . . 4 (𝐺 ∈ UHGraph → (¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
3210, 31biimtrid 242 . . 3 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
33 nne 2950 . . 3 𝐸 ≠ ∅ ↔ 𝐸 = ∅)
3432, 33imbitrdi 251 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅))
357, 34sylbid 240 1 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cfv 6573  0cc0 11184  Vtxcvtx 29031  Edgcedg 29082  UHGraphcuhgr 29091  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-vtxdg 29502
This theorem is referenced by:  usgrvd00  29571  uhgr0edg0rgrb  29610
  Copyright terms: Public domain W3C validator