MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvd00 Structured version   Visualization version   GIF version

Theorem uhgrvd00 27901
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvd00 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem uhgrvd00
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdusgradjvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2738 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3vtxduhgr0edgnel 27861 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒𝐸 𝑣𝑒))
5 ralnex 3167 . . . 4 (∀𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸 𝑣𝑒)
64, 5bitr4di 289 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒𝐸 ¬ 𝑣𝑒))
76ralbidva 3111 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒))
8 ralcom 3166 . . . . 5 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒)
9 ralnex2 3189 . . . . 5 (∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
108, 9bitri 274 . . . 4 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
11 simpr 485 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒𝐸)
122eleq2i 2830 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 uhgredgn0 27498 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1412, 13sylan2b 594 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsn 4720 . . . . . . . . . . 11 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅))
16 elpwi 4542 . . . . . . . . . . . . 13 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
171sseq2i 3950 . . . . . . . . . . . . . 14 (𝑒𝑉𝑒 ⊆ (Vtx‘𝐺))
18 ssn0rex 4289 . . . . . . . . . . . . . . 15 ((𝑒𝑉𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
1918ex 413 . . . . . . . . . . . . . 14 (𝑒𝑉 → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2017, 19sylbir 234 . . . . . . . . . . . . 13 (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2116, 20syl 17 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2221imp 407 . . . . . . . . . . 11 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
2315, 22sylbi 216 . . . . . . . . . 10 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣𝑉 𝑣𝑒)
2414, 23syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → ∃𝑣𝑉 𝑣𝑒)
2511, 24jca 512 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
2625ex 413 . . . . . . 7 (𝐺 ∈ UHGraph → (𝑒𝐸 → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
2726eximdv 1920 . . . . . 6 (𝐺 ∈ UHGraph → (∃𝑒 𝑒𝐸 → ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
28 n0 4280 . . . . . 6 (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒𝐸)
29 df-rex 3070 . . . . . 6 (∃𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
3027, 28, 293imtr4g 296 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒𝐸𝑣𝑉 𝑣𝑒))
3130con3d 152 . . . 4 (𝐺 ∈ UHGraph → (¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
3210, 31syl5bi 241 . . 3 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
33 nne 2947 . . 3 𝐸 ≠ ∅ ↔ 𝐸 = ∅)
3432, 33syl6ib 250 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅))
357, 34sylbid 239 1 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cfv 6433  0cc0 10871  Vtxcvtx 27366  Edgcedg 27417  UHGraphcuhgr 27426  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xadd 12849  df-fz 13240  df-hash 14045  df-edg 27418  df-uhgr 27428  df-vtxdg 27833
This theorem is referenced by:  usgrvd00  27902  uhgr0edg0rgrb  27941
  Copyright terms: Public domain W3C validator