| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrvd00 | Structured version Visualization version GIF version | ||
| Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdusgradjvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdusgradjvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrvd00 | ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdusgradjvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdusgradjvtx.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | vtxduhgr0edgnel 29468 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒)) |
| 5 | ralnex 3058 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒) | |
| 6 | 4, 5 | bitr4di 289 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
| 7 | 6 | ralbidva 3153 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
| 8 | ralcom 3260 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒) | |
| 9 | ralnex2 3112 | . . . . 5 ⊢ (∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
| 12 | 2 | eleq2i 2823 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
| 13 | uhgredgn0 29101 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 14 | 12, 13 | sylan2b 594 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 15 | eldifsn 4733 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅)) | |
| 16 | elpwi 4552 | . . . . . . . . . . . . 13 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
| 17 | 1 | sseq2i 3959 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
| 18 | ssn0rex 4303 | . . . . . . . . . . . . . . 15 ⊢ ((𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
| 19 | 18 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 20 | 17, 19 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 21 | 16, 20 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 22 | 21 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 23 | 15, 22 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 24 | 14, 23 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 25 | 11, 24 | jca 511 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
| 27 | 26 | eximdv 1918 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 𝑒 ∈ 𝐸 → ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
| 28 | n0 4298 | . . . . . 6 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐸) | |
| 29 | df-rex 3057 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) | |
| 30 | 27, 28, 29 | 3imtr4g 296 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 31 | 30 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
| 32 | 10, 31 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
| 33 | nne 2932 | . . 3 ⊢ (¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅) | |
| 34 | 32, 33 | imbitrdi 251 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅)) |
| 35 | 7, 34 | sylbid 240 | 1 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 {csn 4571 ‘cfv 6476 0cc0 11001 Vtxcvtx 28969 Edgcedg 29020 UHGraphcuhgr 29029 VtxDegcvtxdg 29439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-xadd 13007 df-fz 13403 df-hash 14233 df-edg 29021 df-uhgr 29031 df-vtxdg 29440 |
| This theorem is referenced by: usgrvd00 29509 uhgr0edg0rgrb 29548 |
| Copyright terms: Public domain | W3C validator |