MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvd00 Structured version   Visualization version   GIF version

Theorem uhgrvd00 29514
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvd00 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem uhgrvd00
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdusgradjvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2735 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3vtxduhgr0edgnel 29474 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒𝐸 𝑣𝑒))
5 ralnex 3062 . . . 4 (∀𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸 𝑣𝑒)
64, 5bitr4di 289 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒𝐸 ¬ 𝑣𝑒))
76ralbidva 3161 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒))
8 ralcom 3270 . . . . 5 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒)
9 ralnex2 3120 . . . . 5 (∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
108, 9bitri 275 . . . 4 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
11 simpr 484 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒𝐸)
122eleq2i 2826 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 uhgredgn0 29107 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1412, 13sylan2b 594 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsn 4762 . . . . . . . . . . 11 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅))
16 elpwi 4582 . . . . . . . . . . . . 13 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
171sseq2i 3988 . . . . . . . . . . . . . 14 (𝑒𝑉𝑒 ⊆ (Vtx‘𝐺))
18 ssn0rex 4333 . . . . . . . . . . . . . . 15 ((𝑒𝑉𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
1918ex 412 . . . . . . . . . . . . . 14 (𝑒𝑉 → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2017, 19sylbir 235 . . . . . . . . . . . . 13 (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2116, 20syl 17 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2221imp 406 . . . . . . . . . . 11 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
2315, 22sylbi 217 . . . . . . . . . 10 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣𝑉 𝑣𝑒)
2414, 23syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → ∃𝑣𝑉 𝑣𝑒)
2511, 24jca 511 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
2625ex 412 . . . . . . 7 (𝐺 ∈ UHGraph → (𝑒𝐸 → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
2726eximdv 1917 . . . . . 6 (𝐺 ∈ UHGraph → (∃𝑒 𝑒𝐸 → ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
28 n0 4328 . . . . . 6 (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒𝐸)
29 df-rex 3061 . . . . . 6 (∃𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
3027, 28, 293imtr4g 296 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒𝐸𝑣𝑉 𝑣𝑒))
3130con3d 152 . . . 4 (𝐺 ∈ UHGraph → (¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
3210, 31biimtrid 242 . . 3 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
33 nne 2936 . . 3 𝐸 ≠ ∅ ↔ 𝐸 = ∅)
3432, 33imbitrdi 251 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅))
357, 34sylbid 240 1 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cfv 6531  0cc0 11129  Vtxcvtx 28975  Edgcedg 29026  UHGraphcuhgr 29035  VtxDegcvtxdg 29445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-xadd 13129  df-fz 13525  df-hash 14349  df-edg 29027  df-uhgr 29037  df-vtxdg 29446
This theorem is referenced by:  usgrvd00  29515  uhgr0edg0rgrb  29554
  Copyright terms: Public domain W3C validator