Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrvd00 | Structured version Visualization version GIF version |
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
Ref | Expression |
---|---|
vtxdusgradjvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdusgradjvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgrvd00 | ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdusgradjvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdusgradjvtx.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | eqid 2759 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | vtxduhgr0edgnel 27376 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒)) |
5 | ralnex 3164 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒) | |
6 | 4, 5 | bitr4di 293 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
7 | 6 | ralbidva 3126 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
8 | ralcom 3273 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒) | |
9 | ralnex2 3187 | . . . . 5 ⊢ (∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
10 | 8, 9 | bitri 278 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
11 | simpr 489 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
12 | 2 | eleq2i 2844 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
13 | uhgredgn0 27013 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
14 | 12, 13 | sylan2b 597 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
15 | eldifsn 4678 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅)) | |
16 | elpwi 4504 | . . . . . . . . . . . . 13 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
17 | 1 | sseq2i 3922 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
18 | ssn0rex 4255 | . . . . . . . . . . . . . . 15 ⊢ ((𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
19 | 18 | ex 417 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
20 | 17, 19 | sylbir 238 | . . . . . . . . . . . . 13 ⊢ (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
21 | 16, 20 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
22 | 21 | imp 411 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
23 | 15, 22 | sylbi 220 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
24 | 14, 23 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
25 | 11, 24 | jca 516 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
26 | 25 | ex 417 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
27 | 26 | eximdv 1919 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 𝑒 ∈ 𝐸 → ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
28 | n0 4246 | . . . . . 6 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐸) | |
29 | df-rex 3077 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) | |
30 | 27, 28, 29 | 3imtr4g 300 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
31 | 30 | con3d 155 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
32 | 10, 31 | syl5bi 245 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
33 | nne 2956 | . . 3 ⊢ (¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅) | |
34 | 32, 33 | syl6ib 254 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅)) |
35 | 7, 34 | sylbid 243 | 1 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∃wex 1782 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∃wrex 3072 ∖ cdif 3856 ⊆ wss 3859 ∅c0 4226 𝒫 cpw 4495 {csn 4523 ‘cfv 6336 0cc0 10568 Vtxcvtx 26881 Edgcedg 26932 UHGraphcuhgr 26941 VtxDegcvtxdg 27347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-xnn0 12000 df-z 12014 df-uz 12276 df-xadd 12542 df-fz 12933 df-hash 13734 df-edg 26933 df-uhgr 26943 df-vtxdg 27348 |
This theorem is referenced by: usgrvd00 27417 uhgr0edg0rgrb 27456 |
Copyright terms: Public domain | W3C validator |