MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvd00 Structured version   Visualization version   GIF version

Theorem uhgrvd00 27324
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvd00 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem uhgrvd00
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdusgradjvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2798 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3vtxduhgr0edgnel 27284 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒𝐸 𝑣𝑒))
5 ralnex 3199 . . . 4 (∀𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸 𝑣𝑒)
64, 5syl6bbr 292 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒𝐸 ¬ 𝑣𝑒))
76ralbidva 3161 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒))
8 ralcom 3307 . . . . 5 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒)
9 ralnex2 3221 . . . . 5 (∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
108, 9bitri 278 . . . 4 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
11 simpr 488 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒𝐸)
122eleq2i 2881 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 uhgredgn0 26921 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1412, 13sylan2b 596 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsn 4680 . . . . . . . . . . 11 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅))
16 elpwi 4506 . . . . . . . . . . . . 13 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
171sseq2i 3944 . . . . . . . . . . . . . 14 (𝑒𝑉𝑒 ⊆ (Vtx‘𝐺))
18 ssn0rex 4269 . . . . . . . . . . . . . . 15 ((𝑒𝑉𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
1918ex 416 . . . . . . . . . . . . . 14 (𝑒𝑉 → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2017, 19sylbir 238 . . . . . . . . . . . . 13 (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2116, 20syl 17 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2221imp 410 . . . . . . . . . . 11 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
2315, 22sylbi 220 . . . . . . . . . 10 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣𝑉 𝑣𝑒)
2414, 23syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → ∃𝑣𝑉 𝑣𝑒)
2511, 24jca 515 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
2625ex 416 . . . . . . 7 (𝐺 ∈ UHGraph → (𝑒𝐸 → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
2726eximdv 1918 . . . . . 6 (𝐺 ∈ UHGraph → (∃𝑒 𝑒𝐸 → ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
28 n0 4260 . . . . . 6 (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒𝐸)
29 df-rex 3112 . . . . . 6 (∃𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
3027, 28, 293imtr4g 299 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒𝐸𝑣𝑉 𝑣𝑒))
3130con3d 155 . . . 4 (𝐺 ∈ UHGraph → (¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
3210, 31syl5bi 245 . . 3 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
33 nne 2991 . . 3 𝐸 ≠ ∅ ↔ 𝐸 = ∅)
3432, 33syl6ib 254 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅))
357, 34sylbid 243 1 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  cfv 6324  0cc0 10526  Vtxcvtx 26789  Edgcedg 26840  UHGraphcuhgr 26849  VtxDegcvtxdg 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-vtxdg 27256
This theorem is referenced by:  usgrvd00  27325  uhgr0edg0rgrb  27364
  Copyright terms: Public domain W3C validator