![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrvd00 | Structured version Visualization version GIF version |
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
Ref | Expression |
---|---|
vtxdusgradjvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdusgradjvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgrvd00 | ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdusgradjvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdusgradjvtx.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | eqid 2740 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | vtxduhgr0edgnel 29530 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒)) |
5 | ralnex 3078 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒) | |
6 | 4, 5 | bitr4di 289 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
7 | 6 | ralbidva 3182 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
8 | ralcom 3295 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒) | |
9 | ralnex2 3139 | . . . . 5 ⊢ (∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
10 | 8, 9 | bitri 275 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
11 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
12 | 2 | eleq2i 2836 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
13 | uhgredgn0 29163 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
14 | 12, 13 | sylan2b 593 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
15 | eldifsn 4811 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅)) | |
16 | elpwi 4629 | . . . . . . . . . . . . 13 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
17 | 1 | sseq2i 4038 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
18 | ssn0rex 4381 | . . . . . . . . . . . . . . 15 ⊢ ((𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
19 | 18 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
20 | 17, 19 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
21 | 16, 20 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
22 | 21 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
23 | 15, 22 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
24 | 14, 23 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
25 | 11, 24 | jca 511 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
27 | 26 | eximdv 1916 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 𝑒 ∈ 𝐸 → ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
28 | n0 4376 | . . . . . 6 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐸) | |
29 | df-rex 3077 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) | |
30 | 27, 28, 29 | 3imtr4g 296 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
31 | 30 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
32 | 10, 31 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
33 | nne 2950 | . . 3 ⊢ (¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅) | |
34 | 32, 33 | imbitrdi 251 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅)) |
35 | 7, 34 | sylbid 240 | 1 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 0cc0 11184 Vtxcvtx 29031 Edgcedg 29082 UHGraphcuhgr 29091 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-hash 14380 df-edg 29083 df-uhgr 29093 df-vtxdg 29502 |
This theorem is referenced by: usgrvd00 29571 uhgr0edg0rgrb 29610 |
Copyright terms: Public domain | W3C validator |