| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrvd00 | Structured version Visualization version GIF version | ||
| Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdusgradjvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdusgradjvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrvd00 | ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdusgradjvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdusgradjvtx.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | vtxduhgr0edgnel 29458 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒)) |
| 5 | ralnex 3055 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒) | |
| 6 | 4, 5 | bitr4di 289 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
| 7 | 6 | ralbidva 3150 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
| 8 | ralcom 3257 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒) | |
| 9 | ralnex2 3109 | . . . . 5 ⊢ (∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
| 12 | 2 | eleq2i 2820 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
| 13 | uhgredgn0 29091 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 14 | 12, 13 | sylan2b 594 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 15 | eldifsn 4740 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅)) | |
| 16 | elpwi 4560 | . . . . . . . . . . . . 13 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
| 17 | 1 | sseq2i 3967 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
| 18 | ssn0rex 4311 | . . . . . . . . . . . . . . 15 ⊢ ((𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
| 19 | 18 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 20 | 17, 19 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 21 | 16, 20 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 22 | 21 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 23 | 15, 22 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 24 | 14, 23 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
| 25 | 11, 24 | jca 511 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
| 27 | 26 | eximdv 1917 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 𝑒 ∈ 𝐸 → ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
| 28 | n0 4306 | . . . . . 6 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐸) | |
| 29 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) | |
| 30 | 27, 28, 29 | 3imtr4g 296 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
| 31 | 30 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
| 32 | 10, 31 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
| 33 | nne 2929 | . . 3 ⊢ (¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅) | |
| 34 | 32, 33 | imbitrdi 251 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅)) |
| 35 | 7, 34 | sylbid 240 | 1 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ‘cfv 6486 0cc0 11028 Vtxcvtx 28959 Edgcedg 29010 UHGraphcuhgr 29019 VtxDegcvtxdg 29429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-xadd 13033 df-fz 13429 df-hash 14256 df-edg 29011 df-uhgr 29021 df-vtxdg 29430 |
| This theorem is referenced by: usgrvd00 29499 uhgr0edg0rgrb 29538 |
| Copyright terms: Public domain | W3C validator |