![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrvd00 | Structured version Visualization version GIF version |
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
Ref | Expression |
---|---|
vtxdusgradjvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdusgradjvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgrvd00 | ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdusgradjvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdusgradjvtx.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | eqid 2735 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | vtxduhgr0edgnel 29527 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒)) |
5 | ralnex 3070 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑣 ∈ 𝑒) | |
6 | 4, 5 | bitr4di 289 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
7 | 6 | ralbidva 3174 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒)) |
8 | ralcom 3287 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒) | |
9 | ralnex2 3131 | . . . . 5 ⊢ (∀𝑒 ∈ 𝐸 ∀𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
10 | 8, 9 | bitri 275 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
11 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
12 | 2 | eleq2i 2831 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
13 | uhgredgn0 29160 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
14 | 12, 13 | sylan2b 594 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
15 | eldifsn 4791 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅)) | |
16 | elpwi 4612 | . . . . . . . . . . . . 13 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) | |
17 | 1 | sseq2i 4025 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
18 | ssn0rex 4364 | . . . . . . . . . . . . . . 15 ⊢ ((𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) | |
19 | 18 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑒 ⊆ 𝑉 → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
20 | 17, 19 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
21 | 16, 20 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
22 | 21 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
23 | 15, 22 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
24 | 14, 23 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒) |
25 | 11, 24 | jca 511 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 → (𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
27 | 26 | eximdv 1915 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 𝑒 ∈ 𝐸 → ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒))) |
28 | n0 4359 | . . . . . 6 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐸) | |
29 | df-rex 3069 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) | |
30 | 27, 28, 29 | 3imtr4g 296 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒)) |
31 | 30 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
32 | 10, 31 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅)) |
33 | nne 2942 | . . 3 ⊢ (¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅) | |
34 | 32, 33 | imbitrdi 251 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ∀𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅)) |
35 | 7, 34 | sylbid 240 | 1 ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ‘cfv 6563 0cc0 11153 Vtxcvtx 29028 Edgcedg 29079 UHGraphcuhgr 29088 VtxDegcvtxdg 29498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-xadd 13153 df-fz 13545 df-hash 14367 df-edg 29080 df-uhgr 29090 df-vtxdg 29499 |
This theorem is referenced by: usgrvd00 29568 uhgr0edg0rgrb 29607 |
Copyright terms: Public domain | W3C validator |