MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Visualization version   GIF version

Theorem pgpfac1lem1 19677
Description: Lemma for pgpfac1 19683. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
Assertion
Ref Expression
pgpfac1lem1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
21adantr 481 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ 𝑈)
3 pgpfac1.g . . . . . 6 (𝜑𝐺 ∈ Abel)
4 ablgrp 19391 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5 pgpfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
65subgacs 18789 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 17361 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
83, 4, 6, 74syl 19 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
98adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
10 eldifi 4061 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → 𝐶𝑈)
1110adantl 482 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝑈)
1211snssd 4742 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝑈)
13 pgpfac1.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1413adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
15 pgpfac1.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
1615mrcsscl 17329 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐶} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈)
179, 12, 14, 16syl3anc 1370 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈)
18 pgpfac1.s . . . . . . 7 𝑆 = (𝐾‘{𝐴})
195subgss 18756 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2013, 19syl 17 . . . . . . . . 9 (𝜑𝑈𝐵)
21 pgpfac1.au . . . . . . . . 9 (𝜑𝐴𝑈)
2220, 21sseldd 3922 . . . . . . . 8 (𝜑𝐴𝐵)
2315mrcsncl 17321 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
248, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2518, 24eqeltrid 2843 . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
26 pgpfac1.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐺))
27 pgpfac1.l . . . . . . 7 = (LSSum‘𝐺)
2827lsmsubg2 19460 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
293, 25, 26, 28syl3anc 1370 . . . . 5 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3029adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3120sselda 3921 . . . . . 6 ((𝜑𝐶𝑈) → 𝐶𝐵)
3210, 31sylan2 593 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝐵)
3315mrcsncl 17321 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐶𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
349, 32, 33syl2anc 584 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
3527lsmlub 19270 . . . 4 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
3630, 34, 14, 35syl3anc 1370 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
372, 17, 36mpbi2and 709 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈)
3827lsmub1 19262 . . . . . 6 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
3930, 34, 38syl2anc 584 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4027lsmub2 19263 . . . . . . 7 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4130, 34, 40syl2anc 584 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4232snssd 4742 . . . . . . . 8 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝐵)
439, 15, 42mrcssidd 17334 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶}))
44 snssg 4718 . . . . . . . 8 (𝐶𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4532, 44syl 17 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4643, 45mpbird 256 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶}))
4741, 46sseldd 3922 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
48 eldifn 4062 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → ¬ 𝐶 ∈ (𝑆 𝑊))
4948adantl 482 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ 𝐶 ∈ (𝑆 𝑊))
5039, 47, 49ssnelpssd 4047 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))
5127lsmub1 19262 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
5225, 26, 51syl2anc 584 . . . . . . . 8 (𝜑𝑆 ⊆ (𝑆 𝑊))
5322snssd 4742 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ 𝐵)
548, 15, 53mrcssidd 17334 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5554, 18sseqtrrdi 3972 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ 𝑆)
56 snssg 4718 . . . . . . . . . 10 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5721, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5855, 57mpbird 256 . . . . . . . 8 (𝜑𝐴𝑆)
5952, 58sseldd 3922 . . . . . . 7 (𝜑𝐴 ∈ (𝑆 𝑊))
6059adantr 481 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ (𝑆 𝑊))
6139, 60sseldd 3922 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
62 psseq1 4022 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝑤𝑈 ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈))
63 eleq2 2827 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝐴𝑤𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6462, 63anbi12d 631 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑤𝑈𝐴𝑤) ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))))
65 psseq2 4023 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑆 𝑊) ⊊ 𝑤 ↔ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6665notbid 318 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (¬ (𝑆 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6764, 66imbi12d 345 . . . . . 6 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) ↔ ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
68 pgpfac1.2 . . . . . . 7 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
6968adantr 481 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
703adantr 481 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐺 ∈ Abel)
7127lsmsubg2 19460 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7270, 30, 34, 71syl3anc 1370 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7367, 69, 72rspcdva 3562 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7461, 73mpan2d 691 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7550, 74mt2d 136 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈)
76 npss 4045 . . 3 (¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7775, 76sylib 217 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7837, 77mpd 15 1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cin 3886  wss 3887  wpss 3888  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  0gc0g 17150  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Grpcgrp 18577  SubGrpcsubg 18749  odcod 19132  gExcgex 19133   pGrp cpgp 19134  LSSumclsm 19239  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389
This theorem is referenced by:  pgpfac1lem2  19678  pgpfac1lem3  19680
  Copyright terms: Public domain W3C validator