MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Visualization version   GIF version

Theorem pgpfac1lem1 19189
Description: Lemma for pgpfac1 19195. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
Assertion
Ref Expression
pgpfac1lem1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
21adantr 484 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ 𝑈)
3 pgpfac1.g . . . . . 6 (𝜑𝐺 ∈ Abel)
4 ablgrp 18903 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5 pgpfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
65subgacs 18305 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 16915 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
83, 4, 6, 74syl 19 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
98adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
10 eldifi 4054 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → 𝐶𝑈)
1110adantl 485 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝑈)
1211snssd 4702 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝑈)
13 pgpfac1.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1413adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
15 pgpfac1.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
1615mrcsscl 16883 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐶} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈)
179, 12, 14, 16syl3anc 1368 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈)
18 pgpfac1.s . . . . . . 7 𝑆 = (𝐾‘{𝐴})
195subgss 18272 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2013, 19syl 17 . . . . . . . . 9 (𝜑𝑈𝐵)
21 pgpfac1.au . . . . . . . . 9 (𝜑𝐴𝑈)
2220, 21sseldd 3916 . . . . . . . 8 (𝜑𝐴𝐵)
2315mrcsncl 16875 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
248, 22, 23syl2anc 587 . . . . . . 7 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2518, 24eqeltrid 2894 . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
26 pgpfac1.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐺))
27 pgpfac1.l . . . . . . 7 = (LSSum‘𝐺)
2827lsmsubg2 18972 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
293, 25, 26, 28syl3anc 1368 . . . . 5 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3029adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3120sselda 3915 . . . . . 6 ((𝜑𝐶𝑈) → 𝐶𝐵)
3210, 31sylan2 595 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝐵)
3315mrcsncl 16875 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐶𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
349, 32, 33syl2anc 587 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
3527lsmlub 18782 . . . 4 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
3630, 34, 14, 35syl3anc 1368 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
372, 17, 36mpbi2and 711 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈)
3827lsmub1 18774 . . . . . 6 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
3930, 34, 38syl2anc 587 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4027lsmub2 18775 . . . . . . 7 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4130, 34, 40syl2anc 587 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4232snssd 4702 . . . . . . . 8 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝐵)
439, 15, 42mrcssidd 16888 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶}))
44 snssg 4678 . . . . . . . 8 (𝐶𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4532, 44syl 17 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4643, 45mpbird 260 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶}))
4741, 46sseldd 3916 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
48 eldifn 4055 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → ¬ 𝐶 ∈ (𝑆 𝑊))
4948adantl 485 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ 𝐶 ∈ (𝑆 𝑊))
5039, 47, 49ssnelpssd 4040 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))
5127lsmub1 18774 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
5225, 26, 51syl2anc 587 . . . . . . . 8 (𝜑𝑆 ⊆ (𝑆 𝑊))
5322snssd 4702 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ 𝐵)
548, 15, 53mrcssidd 16888 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5554, 18sseqtrrdi 3966 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ 𝑆)
56 snssg 4678 . . . . . . . . . 10 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5721, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5855, 57mpbird 260 . . . . . . . 8 (𝜑𝐴𝑆)
5952, 58sseldd 3916 . . . . . . 7 (𝜑𝐴 ∈ (𝑆 𝑊))
6059adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ (𝑆 𝑊))
6139, 60sseldd 3916 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
62 psseq1 4015 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝑤𝑈 ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈))
63 eleq2 2878 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝐴𝑤𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6462, 63anbi12d 633 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑤𝑈𝐴𝑤) ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))))
65 psseq2 4016 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑆 𝑊) ⊊ 𝑤 ↔ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6665notbid 321 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (¬ (𝑆 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6764, 66imbi12d 348 . . . . . 6 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) ↔ ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
68 pgpfac1.2 . . . . . . 7 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
6968adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
703adantr 484 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐺 ∈ Abel)
7127lsmsubg2 18972 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7270, 30, 34, 71syl3anc 1368 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7367, 69, 72rspcdva 3573 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7461, 73mpan2d 693 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7550, 74mt2d 138 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈)
76 npss 4038 . . 3 (¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7775, 76sylib 221 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7837, 77mpd 15 1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cin 3880  wss 3881  wpss 3882  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  0gc0g 16705  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18095  SubGrpcsubg 18265  odcod 18644  gExcgex 18645   pGrp cpgp 18646  LSSumclsm 18751  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901
This theorem is referenced by:  pgpfac1lem2  19190  pgpfac1lem3  19192
  Copyright terms: Public domain W3C validator