Proof of Theorem pgpfac1lem1
| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac1.ss |
. . . 4
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
| 3 | | pgpfac1.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 4 | | ablgrp 19776 |
. . . . . 6
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 5 | | pgpfac1.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 6 | 5 | subgacs 19153 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
| 7 | | acsmre 17671 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘𝐵) →
(SubGrp‘𝐺) ∈
(Moore‘𝐵)) |
| 8 | 3, 4, 6, 7 | 4syl 19 |
. . . . 5
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
| 10 | | eldifi 4113 |
. . . . . 6
⊢ (𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊)) → 𝐶 ∈ 𝑈) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐶 ∈ 𝑈) |
| 12 | 11 | snssd 4791 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → {𝐶} ⊆ 𝑈) |
| 13 | | pgpfac1.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 14 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 15 | | pgpfac1.k |
. . . . 5
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 16 | 15 | mrcsscl 17639 |
. . . 4
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ {𝐶} ⊆ 𝑈 ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈) |
| 17 | 9, 12, 14, 16 | syl3anc 1372 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈) |
| 18 | | pgpfac1.s |
. . . . . . 7
⊢ 𝑆 = (𝐾‘{𝐴}) |
| 19 | 5 | subgss 19119 |
. . . . . . . . . 10
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
| 20 | 13, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 21 | | pgpfac1.au |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 22 | 20, 21 | sseldd 3966 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 23 | 15 | mrcsncl 17631 |
. . . . . . . 8
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 24 | 8, 22, 23 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 25 | 18, 24 | eqeltrid 2837 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| 26 | | pgpfac1.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 27 | | pgpfac1.l |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝐺) |
| 28 | 27 | lsmsubg2 19850 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 29 | 3, 25, 26, 28 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 30 | 29 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 31 | 20 | sselda 3965 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝐵) |
| 32 | 10, 31 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐶 ∈ 𝐵) |
| 33 | 15 | mrcsncl 17631 |
. . . . 5
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐶 ∈ 𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) |
| 34 | 9, 32, 33 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) |
| 35 | 27 | lsmlub 19655 |
. . . 4
⊢ (((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 ⊕ 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊆ 𝑈)) |
| 36 | 30, 34, 14, 35 | syl3anc 1372 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (((𝑆 ⊕ 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊆ 𝑈)) |
| 37 | 2, 17, 36 | mpbi2and 712 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊆ 𝑈) |
| 38 | 27 | lsmub1 19648 |
. . . . . 6
⊢ (((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ⊆ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 39 | 30, 34, 38 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝑆 ⊕ 𝑊) ⊆ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 40 | 27 | lsmub2 19649 |
. . . . . . 7
⊢ (((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 41 | 30, 34, 40 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 42 | 32 | snssd 4791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → {𝐶} ⊆ 𝐵) |
| 43 | 9, 15, 42 | mrcssidd 17644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶})) |
| 44 | | snssg 4765 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶}))) |
| 45 | 32, 44 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶}))) |
| 46 | 43, 45 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶})) |
| 47 | 41, 46 | sseldd 3966 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐶 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 48 | | eldifn 4114 |
. . . . . 6
⊢ (𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊)) → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 49 | 48 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 50 | 39, 47, 49 | ssnelpssd 4097 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 51 | 27 | lsmub1 19648 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑊)) |
| 52 | 25, 26, 51 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ (𝑆 ⊕ 𝑊)) |
| 53 | 22 | snssd 4791 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| 54 | 8, 15, 53 | mrcssidd 17644 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴})) |
| 55 | 54, 18 | sseqtrrdi 4007 |
. . . . . . . . 9
⊢ (𝜑 → {𝐴} ⊆ 𝑆) |
| 56 | | snssg 4765 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 57 | 21, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 58 | 55, 57 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 59 | 52, 58 | sseldd 3966 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝑆 ⊕ 𝑊)) |
| 60 | 59 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐴 ∈ (𝑆 ⊕ 𝑊)) |
| 61 | 39, 60 | sseldd 3966 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐴 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) |
| 62 | | psseq1 4072 |
. . . . . . . 8
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → (𝑤 ⊊ 𝑈 ↔ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈)) |
| 63 | | eleq2 2822 |
. . . . . . . 8
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})))) |
| 64 | 62, 63 | anbi12d 632 |
. . . . . . 7
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → ((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) ↔ (((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈 ∧ 𝐴 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))))) |
| 65 | | psseq2 4073 |
. . . . . . . 8
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → ((𝑆 ⊕ 𝑊) ⊊ 𝑤 ↔ (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})))) |
| 66 | 65 | notbid 318 |
. . . . . . 7
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → (¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})))) |
| 67 | 64, 66 | imbi12d 344 |
. . . . . 6
⊢ (𝑤 = ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) → (((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤) ↔ ((((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈 ∧ 𝐴 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) → ¬ (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))))) |
| 68 | | pgpfac1.2 |
. . . . . . 7
⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
| 69 | 68 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
| 70 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → 𝐺 ∈ Abel) |
| 71 | 27 | lsmsubg2 19850 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺)) |
| 72 | 70, 30, 34, 71 | syl3anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺)) |
| 73 | 67, 69, 72 | rspcdva 3607 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈 ∧ 𝐴 ∈ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶}))) → ¬ (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})))) |
| 74 | 61, 73 | mpan2d 694 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 ⊕ 𝑊) ⊊ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})))) |
| 75 | 50, 74 | mt2d 136 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ¬ ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈) |
| 76 | | npss 4095 |
. . 3
⊢ (¬
((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) = 𝑈)) |
| 77 | 75, 76 | sylib 218 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → (((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) = 𝑈)) |
| 78 | 37, 77 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) = 𝑈) |