Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. . . 4
⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) |
2 | | symgtrf.g |
. . . . . . 7
⊢ 𝐺 = (SymGrp‘𝐷) |
3 | 2 | symggrp 18923 |
. . . . . 6
⊢ (𝐷 ∈ V → 𝐺 ∈ Grp) |
4 | 3 | grpmndd 18504 |
. . . . 5
⊢ (𝐷 ∈ V → 𝐺 ∈ Mnd) |
5 | | symgtrf.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
6 | 5 | submacs 18380 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) ∈
(ACS‘𝐵)) |
7 | | acsmre 17278 |
. . . . 5
⊢
((SubMnd‘𝐺)
∈ (ACS‘𝐵) →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
8 | 4, 6, 7 | 3syl 18 |
. . . 4
⊢ (𝐷 ∈ V →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
9 | 1, 8 | syl 17 |
. . 3
⊢ (𝐷 ∈ 𝑉 → (SubMnd‘𝐺) ∈ (Moore‘𝐵)) |
10 | | symgtrf.t |
. . . . . 6
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
11 | 10, 2, 5 | symgtrf 18992 |
. . . . 5
⊢ 𝑇 ⊆ 𝐵 |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝐷 ∈ 𝑉 → 𝑇 ⊆ 𝐵) |
13 | | 2onn 8433 |
. . . . . 6
⊢
2o ∈ ω |
14 | | nnfi 8912 |
. . . . . 6
⊢
(2o ∈ ω → 2o ∈
Fin) |
15 | 13, 14 | ax-mp 5 |
. . . . 5
⊢
2o ∈ Fin |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
17 | 16, 10 | pmtrfb 18988 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑇 ↔ (𝐷 ∈ V ∧ 𝑥:𝐷–1-1-onto→𝐷 ∧ dom (𝑥 ∖ I ) ≈
2o)) |
18 | 17 | simp3bi 1145 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑇 → dom (𝑥 ∖ I ) ≈
2o) |
19 | | enfi 8933 |
. . . . . . 7
⊢ (dom
(𝑥 ∖ I ) ≈
2o → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ 𝑇 → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
21 | 20 | adantl 481 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇) → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
22 | 15, 21 | mpbiri 257 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇) → dom (𝑥 ∖ I ) ∈ Fin) |
23 | 12, 22 | ssrabdv 4003 |
. . 3
⊢ (𝐷 ∈ 𝑉 → 𝑇 ⊆ {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
24 | 2, 5 | symgfisg 18991 |
. . . 4
⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈
(SubGrp‘𝐺)) |
25 | | subgsubm 18692 |
. . . 4
⊢ ({𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈
(SubGrp‘𝐺) →
{𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈
(SubMnd‘𝐺)) |
26 | 24, 25 | syl 17 |
. . 3
⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈
(SubMnd‘𝐺)) |
27 | | symggen.k |
. . . 4
⊢ 𝐾 =
(mrCls‘(SubMnd‘𝐺)) |
28 | 27 | mrcsscl 17246 |
. . 3
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ 𝑇 ⊆ {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈
(SubMnd‘𝐺)) →
(𝐾‘𝑇) ⊆ {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
29 | 9, 23, 26, 28 | syl3anc 1369 |
. 2
⊢ (𝐷 ∈ 𝑉 → (𝐾‘𝑇) ⊆ {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
30 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
31 | 30 | a1i 11 |
. . . . . 6
⊢ (dom
(𝑥 ∖ I ) ∈ Fin
→ 𝑥 ∈
V) |
32 | | finnum 9637 |
. . . . . 6
⊢ (dom
(𝑥 ∖ I ) ∈ Fin
→ dom (𝑥 ∖ I )
∈ dom card) |
33 | | domfi 8935 |
. . . . . . . 8
⊢ ((dom
(𝑥 ∖ I ) ∈ Fin
∧ dom (𝑦 ∖ I )
≼ dom (𝑥 ∖ I ))
→ dom (𝑦 ∖ I )
∈ Fin) |
34 | 2, 5 | symgbasf1o 18897 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐵 → 𝑦:𝐷–1-1-onto→𝐷) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → 𝑦:𝐷–1-1-onto→𝐷) |
36 | | f1ofn 6701 |
. . . . . . . . . . . . . 14
⊢ (𝑦:𝐷–1-1-onto→𝐷 → 𝑦 Fn 𝐷) |
37 | | fnnfpeq0 7032 |
. . . . . . . . . . . . . 14
⊢ (𝑦 Fn 𝐷 → (dom (𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷))) |
38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → (dom (𝑦 ∖ I ) = ∅ ↔
𝑦 = ( I ↾ 𝐷))) |
39 | 2, 5 | elbasfv 16846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
41 | 2 | symgid 18924 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ V → ( I ↾
𝐷) =
(0g‘𝐺)) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → ( I ↾ 𝐷) = (0g‘𝐺)) |
43 | 40, 8 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵)) |
44 | 27 | mrccl 17237 |
. . . . . . . . . . . . . . . . 17
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ 𝑇 ⊆ 𝐵) → (𝐾‘𝑇) ∈ (SubMnd‘𝐺)) |
45 | 43, 11, 44 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → (𝐾‘𝑇) ∈ (SubMnd‘𝐺)) |
46 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝐺) = (0g‘𝐺) |
47 | 46 | subm0cl 18365 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾‘𝑇) ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ (𝐾‘𝑇)) |
48 | 45, 47 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) →
(0g‘𝐺)
∈ (𝐾‘𝑇)) |
49 | 42, 48 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → ( I ↾ 𝐷) ∈ (𝐾‘𝑇)) |
50 | | eleq1a 2834 |
. . . . . . . . . . . . . 14
⊢ (( I
↾ 𝐷) ∈ (𝐾‘𝑇) → (𝑦 = ( I ↾ 𝐷) → 𝑦 ∈ (𝐾‘𝑇))) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → (𝑦 = ( I ↾ 𝐷) → 𝑦 ∈ (𝐾‘𝑇))) |
52 | 38, 51 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → (dom (𝑦 ∖ I ) = ∅ →
𝑦 ∈ (𝐾‘𝑇))) |
53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → (dom (𝑦 ∖ I ) = ∅ → 𝑦 ∈ (𝐾‘𝑇))) |
54 | | n0 4277 |
. . . . . . . . . . . 12
⊢ (dom
(𝑦 ∖ I ) ≠ ∅
↔ ∃𝑢 𝑢 ∈ dom (𝑦 ∖ I )) |
55 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝐷 ∈ V) |
56 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢 ∈ dom (𝑦 ∖ I )) |
57 | | f1omvdmvd 18966 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦:𝐷–1-1-onto→𝐷 ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦‘𝑢) ∈ (dom (𝑦 ∖ I ) ∖ {𝑢})) |
58 | 35, 57 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦‘𝑢) ∈ (dom (𝑦 ∖ I ) ∖ {𝑢})) |
59 | 58 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦‘𝑢) ∈ dom (𝑦 ∖ I )) |
60 | 56, 59 | prssd 4752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦‘𝑢)} ⊆ dom (𝑦 ∖ I )) |
61 | | difss 4062 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∖ I ) ⊆ 𝑦 |
62 | | dmss 5800 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∖ I ) ⊆ 𝑦 → dom (𝑦 ∖ I ) ⊆ dom 𝑦) |
63 | 61, 62 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ dom
(𝑦 ∖ I ) ⊆ dom
𝑦 |
64 | | f1odm 6704 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦:𝐷–1-1-onto→𝐷 → dom 𝑦 = 𝐷) |
65 | 35, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → dom 𝑦 = 𝐷) |
66 | 63, 65 | sseqtrid 3969 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → dom (𝑦 ∖ I ) ⊆ 𝐷) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ⊆ 𝐷) |
68 | 60, 67 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦‘𝑢)} ⊆ 𝐷) |
69 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑢 ∈ V |
70 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦‘𝑢) ∈ V |
71 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦:𝐷–1-1-onto→𝐷) |
72 | 71, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦 Fn 𝐷) |
73 | 66 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢 ∈ 𝐷) |
74 | | fnelnfp 7031 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷) → (𝑢 ∈ dom (𝑦 ∖ I ) ↔ (𝑦‘𝑢) ≠ 𝑢)) |
75 | 72, 73, 74 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑢 ∈ dom (𝑦 ∖ I ) ↔ (𝑦‘𝑢) ≠ 𝑢)) |
76 | 56, 75 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦‘𝑢) ≠ 𝑢) |
77 | 76 | necomd 2998 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢 ≠ (𝑦‘𝑢)) |
78 | | pr2nelem 9691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 ∈ V ∧ (𝑦‘𝑢) ∈ V ∧ 𝑢 ≠ (𝑦‘𝑢)) → {𝑢, (𝑦‘𝑢)} ≈ 2o) |
79 | 69, 70, 77, 78 | mp3an12i 1463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦‘𝑢)} ≈ 2o) |
80 | 16, 10 | pmtrrn 18980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ V ∧ {𝑢, (𝑦‘𝑢)} ⊆ 𝐷 ∧ {𝑢, (𝑦‘𝑢)} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝑇) |
81 | 55, 68, 79, 80 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝑇) |
82 | 11, 81 | sselid 3915 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝐵) |
83 | | simplr 765 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦 ∈ 𝐵) |
84 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(+g‘𝐺) = (+g‘𝐺) |
85 | 2, 5, 84 | symgov 18906 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) |
86 | 82, 83, 85 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) |
87 | 86 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦))) |
88 | 40, 3 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ Grp) |
89 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝐺 ∈ Grp) |
90 | 5, 84 | grpcl 18500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧
((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵) |
91 | 89, 82, 83, 90 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵) |
92 | 86, 91 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∈ 𝐵) |
93 | 2, 5, 84 | symgov 18906 |
. . . . . . . . . . . . . . . . . 18
⊢
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝐵 ∧ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦))) |
94 | 82, 92, 93 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦))) |
95 | | coass 6158 |
. . . . . . . . . . . . . . . . . 18
⊢
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})) ∘ 𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) |
96 | 16, 10 | pmtrfinv 18984 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ 𝑇 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})) = ( I ↾ 𝐷)) |
97 | 81, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})) = ( I ↾ 𝐷)) |
98 | 97 | coeq1d 5759 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})) ∘ 𝑦) = (( I ↾ 𝐷) ∘ 𝑦)) |
99 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦:𝐷–1-1-onto→𝐷 → 𝑦:𝐷⟶𝐷) |
100 | | fcoi2 6633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦:𝐷⟶𝐷 → (( I ↾ 𝐷) ∘ 𝑦) = 𝑦) |
101 | 71, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (( I ↾ 𝐷) ∘ 𝑦) = 𝑦) |
102 | 98, 101 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})) ∘ 𝑦) = 𝑦) |
103 | 95, 102 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)) = 𝑦) |
104 | 87, 94, 103 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦)) = 𝑦) |
105 | 104 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦)) = 𝑦) |
106 | 45 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝐾‘𝑇) ∈ (SubMnd‘𝐺)) |
107 | 27 | mrcssid 17243 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ 𝑇 ⊆ 𝐵) → 𝑇 ⊆ (𝐾‘𝑇)) |
108 | 43, 11, 107 | sylancl 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) → 𝑇 ⊆ (𝐾‘𝑇)) |
109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑇 ⊆ (𝐾‘𝑇)) |
110 | 109, 81 | sseldd 3918 |
. . . . . . . . . . . . . . . . 17
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ (𝐾‘𝑇)) |
111 | 110 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ (𝐾‘𝑇)) |
112 | 86 | difeq1d 4052 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) = ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I )) |
113 | 112 | dmeqd 5803 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) = dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I )) |
114 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ∈ Fin) |
115 | | mvdco 18968 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ⊆ (dom
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∖ I ) ∪ dom (𝑦 ∖ I )) |
116 | 16 | pmtrmvd 18979 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐷 ∈ V ∧ {𝑢, (𝑦‘𝑢)} ⊆ 𝐷 ∧ {𝑢, (𝑦‘𝑢)} ≈ 2o) → dom
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∖ I ) = {𝑢, (𝑦‘𝑢)}) |
117 | 55, 68, 79, 116 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∖ I ) = {𝑢, (𝑦‘𝑢)}) |
118 | 117, 60 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∖ I ) ⊆ dom (𝑦 ∖ I )) |
119 | | ssidd 3940 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ⊆ dom (𝑦 ∖ I )) |
120 | 118, 119 | unssd 4116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (dom
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∖ I ) ∪ dom (𝑦 ∖ I )) ⊆ dom (𝑦 ∖ I )) |
121 | 115, 120 | sstrid 3928 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ⊆ dom (𝑦 ∖ I )) |
122 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})‘(𝑦‘𝑢))) |
123 | 72, 73, 122 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})‘(𝑦‘𝑢))) |
124 | | prcom 4665 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑢, (𝑦‘𝑢)} = {(𝑦‘𝑢), 𝑢} |
125 | 124 | fveq2i 6759 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) = ((pmTrsp‘𝐷)‘{(𝑦‘𝑢), 𝑢}) |
126 | 125 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})‘(𝑦‘𝑢)) = (((pmTrsp‘𝐷)‘{(𝑦‘𝑢), 𝑢})‘(𝑦‘𝑢)) |
127 | 67, 59 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦‘𝑢) ∈ 𝐷) |
128 | 16 | pmtrprfv 18976 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐷 ∈ V ∧ ((𝑦‘𝑢) ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ∧ (𝑦‘𝑢) ≠ 𝑢)) → (((pmTrsp‘𝐷)‘{(𝑦‘𝑢), 𝑢})‘(𝑦‘𝑢)) = 𝑢) |
129 | 55, 127, 73, 76, 128 | syl13anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{(𝑦‘𝑢), 𝑢})‘(𝑦‘𝑢)) = 𝑢) |
130 | 126, 129 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})‘(𝑦‘𝑢)) = 𝑢) |
131 | 123, 130 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢) |
132 | 2, 5 | symgbasf1o 18897 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦):𝐷–1-1-onto→𝐷) |
133 | | f1ofn 6701 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦):𝐷–1-1-onto→𝐷 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) Fn 𝐷) |
134 | 92, 132, 133 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) Fn 𝐷) |
135 | | fnelnfp 7031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) Fn 𝐷 ∧ 𝑢 ∈ 𝐷) → (𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ↔ ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) ≠ 𝑢)) |
136 | 135 | necon2bbid 2986 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) Fn 𝐷 ∧ 𝑢 ∈ 𝐷) → (((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢 ↔ ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ))) |
137 | 134, 73, 136 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢 ↔ ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ))) |
138 | 131, 137 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I )) |
139 | 121, 56, 138 | ssnelpssd 4043 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ⊊ dom (𝑦 ∖ I )) |
140 | | php3 8899 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
(𝑦 ∖ I ) ∈ Fin
∧ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ⊊ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ≺ dom (𝑦 ∖ I )) |
141 | 114, 139,
140 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∘ 𝑦) ∖ I ) ≺ dom (𝑦 ∖ I )) |
142 | 113, 141 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . 18
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I )) |
143 | 142 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I )) |
144 | 91 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵) |
145 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ V |
146 | | difeq1 4046 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → (𝑧 ∖ I ) = ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I )) |
147 | 146 | dmeqd 5803 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → dom (𝑧 ∖ I ) = dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I )) |
148 | 147 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → (dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) ↔ dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ))) |
149 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → (𝑧 ∈ 𝐵 ↔ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵)) |
150 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → (𝑧 ∈ (𝐾‘𝑇) ↔ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇))) |
151 | 149, 150 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → ((𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)) ↔ ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇)))) |
152 | 148, 151 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) → ((dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇))) ↔ (dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇))))) |
153 | 145, 152 | spcv 3534 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧(dom
(𝑧 ∖ I ) ≺ dom
(𝑦 ∖ I ) →
(𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇))) → (dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇)))) |
154 | 153 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (dom
((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇)))) |
155 | 143, 144,
154 | mp2d 49 |
. . . . . . . . . . . . . . . 16
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇)) |
156 | 84 | submcl 18366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾‘𝑇) ∈ (SubMnd‘𝐺) ∧ ((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)}) ∈ (𝐾‘𝑇) ∧ (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦) ∈ (𝐾‘𝑇)) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦)) ∈ (𝐾‘𝑇)) |
157 | 106, 111,
155, 156 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦‘𝑢)})(+g‘𝐺)𝑦)) ∈ (𝐾‘𝑇)) |
158 | 105, 157 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦 ∈ (𝐾‘𝑇)) |
159 | 158 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → (𝑢 ∈ dom (𝑦 ∖ I ) → 𝑦 ∈ (𝐾‘𝑇))) |
160 | 159 | exlimdv 1937 |
. . . . . . . . . . . 12
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → (∃𝑢 𝑢 ∈ dom (𝑦 ∖ I ) → 𝑦 ∈ (𝐾‘𝑇))) |
161 | 54, 160 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → (dom (𝑦 ∖ I ) ≠ ∅ → 𝑦 ∈ (𝐾‘𝑇))) |
162 | 53, 161 | pm2.61dne 3030 |
. . . . . . . . . 10
⊢ (((dom
(𝑦 ∖ I ) ∈ Fin
∧ 𝑦 ∈ 𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → 𝑦 ∈ (𝐾‘𝑇)) |
163 | 162 | exp31 419 |
. . . . . . . . 9
⊢ (dom
(𝑦 ∖ I ) ∈ Fin
→ (𝑦 ∈ 𝐵 → (∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇))) → 𝑦 ∈ (𝐾‘𝑇)))) |
164 | 163 | com23 86 |
. . . . . . . 8
⊢ (dom
(𝑦 ∖ I ) ∈ Fin
→ (∀𝑧(dom
(𝑧 ∖ I ) ≺ dom
(𝑦 ∖ I ) →
(𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇))) → (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾‘𝑇)))) |
165 | 33, 164 | syl 17 |
. . . . . . 7
⊢ ((dom
(𝑥 ∖ I ) ∈ Fin
∧ dom (𝑦 ∖ I )
≼ dom (𝑥 ∖ I ))
→ (∀𝑧(dom
(𝑧 ∖ I ) ≺ dom
(𝑦 ∖ I ) →
(𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇))) → (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾‘𝑇)))) |
166 | 165 | 3impia 1115 |
. . . . . 6
⊢ ((dom
(𝑥 ∖ I ) ∈ Fin
∧ dom (𝑦 ∖ I )
≼ dom (𝑥 ∖ I )
∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) → (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾‘𝑇))) |
167 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
168 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝐾‘𝑇) ↔ 𝑧 ∈ (𝐾‘𝑇))) |
169 | 167, 168 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾‘𝑇)) ↔ (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐾‘𝑇)))) |
170 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
171 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (𝐾‘𝑇) ↔ 𝑥 ∈ (𝐾‘𝑇))) |
172 | 170, 171 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾‘𝑇)) ↔ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐾‘𝑇)))) |
173 | | difeq1 4046 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∖ I ) = (𝑧 ∖ I )) |
174 | 173 | dmeqd 5803 |
. . . . . 6
⊢ (𝑦 = 𝑧 → dom (𝑦 ∖ I ) = dom (𝑧 ∖ I )) |
175 | | difeq1 4046 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∖ I ) = (𝑥 ∖ I )) |
176 | 175 | dmeqd 5803 |
. . . . . 6
⊢ (𝑦 = 𝑥 → dom (𝑦 ∖ I ) = dom (𝑥 ∖ I )) |
177 | 31, 32, 166, 169, 172, 174, 176 | indcardi 9728 |
. . . . 5
⊢ (dom
(𝑥 ∖ I ) ∈ Fin
→ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐾‘𝑇))) |
178 | 177 | impcom 407 |
. . . 4
⊢ ((𝑥 ∈ 𝐵 ∧ dom (𝑥 ∖ I ) ∈ Fin) → 𝑥 ∈ (𝐾‘𝑇)) |
179 | 178 | 3adant1 1128 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ dom (𝑥 ∖ I ) ∈ Fin) → 𝑥 ∈ (𝐾‘𝑇)) |
180 | 179 | rabssdv 4004 |
. 2
⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (𝐾‘𝑇)) |
181 | 29, 180 | eqssd 3934 |
1
⊢ (𝐷 ∈ 𝑉 → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |