MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggen Structured version   Visualization version   GIF version

Theorem symggen 19066
Description: The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrf.g 𝐺 = (SymGrp‘𝐷)
symgtrf.b 𝐵 = (Base‘𝐺)
symggen.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
Assertion
Ref Expression
symggen (𝐷𝑉 → (𝐾𝑇) = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝐾   𝑥,𝐷   𝑥,𝐺   𝑥,𝑉

Proof of Theorem symggen
Dummy variables 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3448 . . . 4 (𝐷𝑉𝐷 ∈ V)
2 symgtrf.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
32symggrp 18996 . . . . . 6 (𝐷 ∈ V → 𝐺 ∈ Grp)
43grpmndd 18577 . . . . 5 (𝐷 ∈ V → 𝐺 ∈ Mnd)
5 symgtrf.b . . . . . 6 𝐵 = (Base‘𝐺)
65submacs 18453 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 17349 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
84, 6, 73syl 18 . . . 4 (𝐷 ∈ V → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
91, 8syl 17 . . 3 (𝐷𝑉 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
10 symgtrf.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
1110, 2, 5symgtrf 19065 . . . . 5 𝑇𝐵
1211a1i 11 . . . 4 (𝐷𝑉𝑇𝐵)
13 2onn 8460 . . . . . 6 2o ∈ ω
14 nnfi 8938 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
1513, 14ax-mp 5 . . . . 5 2o ∈ Fin
16 eqid 2738 . . . . . . . . 9 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
1716, 10pmtrfb 19061 . . . . . . . 8 (𝑥𝑇 ↔ (𝐷 ∈ V ∧ 𝑥:𝐷1-1-onto𝐷 ∧ dom (𝑥 ∖ I ) ≈ 2o))
1817simp3bi 1146 . . . . . . 7 (𝑥𝑇 → dom (𝑥 ∖ I ) ≈ 2o)
19 enfi 8961 . . . . . . 7 (dom (𝑥 ∖ I ) ≈ 2o → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin))
2018, 19syl 17 . . . . . 6 (𝑥𝑇 → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin))
2120adantl 482 . . . . 5 ((𝐷𝑉𝑥𝑇) → (dom (𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin))
2215, 21mpbiri 257 . . . 4 ((𝐷𝑉𝑥𝑇) → dom (𝑥 ∖ I ) ∈ Fin)
2312, 22ssrabdv 4007 . . 3 (𝐷𝑉𝑇 ⊆ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
242, 5symgfisg 19064 . . . 4 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
25 subgsubm 18765 . . . 4 ({𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺) → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubMnd‘𝐺))
2624, 25syl 17 . . 3 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubMnd‘𝐺))
27 symggen.k . . . 4 𝐾 = (mrCls‘(SubMnd‘𝐺))
2827mrcsscl 17317 . . 3 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ 𝑇 ⊆ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubMnd‘𝐺)) → (𝐾𝑇) ⊆ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
299, 23, 26, 28syl3anc 1370 . 2 (𝐷𝑉 → (𝐾𝑇) ⊆ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
30 vex 3434 . . . . . . 7 𝑥 ∈ V
3130a1i 11 . . . . . 6 (dom (𝑥 ∖ I ) ∈ Fin → 𝑥 ∈ V)
32 finnum 9694 . . . . . 6 (dom (𝑥 ∖ I ) ∈ Fin → dom (𝑥 ∖ I ) ∈ dom card)
33 domfi 8963 . . . . . . . 8 ((dom (𝑥 ∖ I ) ∈ Fin ∧ dom (𝑦 ∖ I ) ≼ dom (𝑥 ∖ I )) → dom (𝑦 ∖ I ) ∈ Fin)
342, 5symgbasf1o 18970 . . . . . . . . . . . . . . 15 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
3534adantl 482 . . . . . . . . . . . . . 14 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → 𝑦:𝐷1-1-onto𝐷)
36 f1ofn 6710 . . . . . . . . . . . . . 14 (𝑦:𝐷1-1-onto𝐷𝑦 Fn 𝐷)
37 fnnfpeq0 7043 . . . . . . . . . . . . . 14 (𝑦 Fn 𝐷 → (dom (𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷)))
3835, 36, 373syl 18 . . . . . . . . . . . . 13 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (dom (𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷)))
392, 5elbasfv 16906 . . . . . . . . . . . . . . . . 17 (𝑦𝐵𝐷 ∈ V)
4039adantl 482 . . . . . . . . . . . . . . . 16 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → 𝐷 ∈ V)
412symgid 18997 . . . . . . . . . . . . . . . 16 (𝐷 ∈ V → ( I ↾ 𝐷) = (0g𝐺))
4240, 41syl 17 . . . . . . . . . . . . . . 15 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → ( I ↾ 𝐷) = (0g𝐺))
4340, 8syl 17 . . . . . . . . . . . . . . . . 17 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
4427mrccl 17308 . . . . . . . . . . . . . . . . 17 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ 𝑇𝐵) → (𝐾𝑇) ∈ (SubMnd‘𝐺))
4543, 11, 44sylancl 586 . . . . . . . . . . . . . . . 16 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (𝐾𝑇) ∈ (SubMnd‘𝐺))
46 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g𝐺) = (0g𝐺)
4746subm0cl 18438 . . . . . . . . . . . . . . . 16 ((𝐾𝑇) ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ (𝐾𝑇))
4845, 47syl 17 . . . . . . . . . . . . . . 15 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (0g𝐺) ∈ (𝐾𝑇))
4942, 48eqeltrd 2839 . . . . . . . . . . . . . 14 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → ( I ↾ 𝐷) ∈ (𝐾𝑇))
50 eleq1a 2834 . . . . . . . . . . . . . 14 (( I ↾ 𝐷) ∈ (𝐾𝑇) → (𝑦 = ( I ↾ 𝐷) → 𝑦 ∈ (𝐾𝑇)))
5149, 50syl 17 . . . . . . . . . . . . 13 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (𝑦 = ( I ↾ 𝐷) → 𝑦 ∈ (𝐾𝑇)))
5238, 51sylbid 239 . . . . . . . . . . . 12 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → (dom (𝑦 ∖ I ) = ∅ → 𝑦 ∈ (𝐾𝑇)))
5352adantr 481 . . . . . . . . . . 11 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → (dom (𝑦 ∖ I ) = ∅ → 𝑦 ∈ (𝐾𝑇)))
54 n0 4281 . . . . . . . . . . . 12 (dom (𝑦 ∖ I ) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ dom (𝑦 ∖ I ))
5540adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝐷 ∈ V)
56 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢 ∈ dom (𝑦 ∖ I ))
57 f1omvdmvd 19039 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦:𝐷1-1-onto𝐷𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦𝑢) ∈ (dom (𝑦 ∖ I ) ∖ {𝑢}))
5835, 57sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦𝑢) ∈ (dom (𝑦 ∖ I ) ∖ {𝑢}))
5958eldifad 3899 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦𝑢) ∈ dom (𝑦 ∖ I ))
6056, 59prssd 4756 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦𝑢)} ⊆ dom (𝑦 ∖ I ))
61 difss 4066 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∖ I ) ⊆ 𝑦
62 dmss 5805 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∖ I ) ⊆ 𝑦 → dom (𝑦 ∖ I ) ⊆ dom 𝑦)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 dom (𝑦 ∖ I ) ⊆ dom 𝑦
64 f1odm 6713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦:𝐷1-1-onto𝐷 → dom 𝑦 = 𝐷)
6535, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → dom 𝑦 = 𝐷)
6663, 65sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → dom (𝑦 ∖ I ) ⊆ 𝐷)
6766adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ⊆ 𝐷)
6860, 67sstrd 3931 . . . . . . . . . . . . . . . . . . . . 21 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦𝑢)} ⊆ 𝐷)
69 vex 3434 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 ∈ V
70 fvex 6780 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑢) ∈ V
7135adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦:𝐷1-1-onto𝐷)
7271, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦 Fn 𝐷)
7366sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢𝐷)
74 fnelnfp 7042 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 Fn 𝐷𝑢𝐷) → (𝑢 ∈ dom (𝑦 ∖ I ) ↔ (𝑦𝑢) ≠ 𝑢))
7572, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑢 ∈ dom (𝑦 ∖ I ) ↔ (𝑦𝑢) ≠ 𝑢))
7656, 75mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦𝑢) ≠ 𝑢)
7776necomd 2999 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑢 ≠ (𝑦𝑢))
78 pr2nelem 9748 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 ∈ V ∧ (𝑦𝑢) ∈ V ∧ 𝑢 ≠ (𝑦𝑢)) → {𝑢, (𝑦𝑢)} ≈ 2o)
7969, 70, 77, 78mp3an12i 1464 . . . . . . . . . . . . . . . . . . . . 21 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → {𝑢, (𝑦𝑢)} ≈ 2o)
8016, 10pmtrrn 19053 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ V ∧ {𝑢, (𝑦𝑢)} ⊆ 𝐷 ∧ {𝑢, (𝑦𝑢)} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝑇)
8155, 68, 79, 80syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝑇)
8211, 81sselid 3919 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝐵)
83 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦𝐵)
84 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (+g𝐺) = (+g𝐺)
852, 5, 84symgov 18979 . . . . . . . . . . . . . . . . . . 19 ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝐵𝑦𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦))
8682, 83, 85syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦))
8786oveq2d 7284 . . . . . . . . . . . . . . . . 17 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)))
8840, 3syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → 𝐺 ∈ Grp)
8988adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝐺 ∈ Grp)
905, 84grpcl 18573 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝐵𝑦𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵)
9189, 82, 83, 90syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵)
9286, 91eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∈ 𝐵)
932, 5, 84symgov 18979 . . . . . . . . . . . . . . . . . 18 ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝐵 ∧ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)))
9482, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . 17 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)))
95 coass 6163 . . . . . . . . . . . . . . . . . 18 ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})) ∘ 𝑦) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦))
9616, 10pmtrfinv 19057 . . . . . . . . . . . . . . . . . . . . 21 (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ 𝑇 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})) = ( I ↾ 𝐷))
9781, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})) = ( I ↾ 𝐷))
9897coeq1d 5764 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})) ∘ 𝑦) = (( I ↾ 𝐷) ∘ 𝑦))
99 f1of 6709 . . . . . . . . . . . . . . . . . . . 20 (𝑦:𝐷1-1-onto𝐷𝑦:𝐷𝐷)
100 fcoi2 6642 . . . . . . . . . . . . . . . . . . . 20 (𝑦:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑦) = 𝑦)
10171, 99, 1003syl 18 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (( I ↾ 𝐷) ∘ 𝑦) = 𝑦)
10298, 101eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})) ∘ 𝑦) = 𝑦)
10395, 102eqtr3id 2792 . . . . . . . . . . . . . . . . 17 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)) = 𝑦)
10487, 94, 1033eqtrd 2782 . . . . . . . . . . . . . . . 16 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦)) = 𝑦)
105104adantlr 712 . . . . . . . . . . . . . . 15 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦)) = 𝑦)
10645ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝐾𝑇) ∈ (SubMnd‘𝐺))
10727mrcssid 17314 . . . . . . . . . . . . . . . . . . . 20 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ 𝑇𝐵) → 𝑇 ⊆ (𝐾𝑇))
10843, 11, 107sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) → 𝑇 ⊆ (𝐾𝑇))
109108adantr 481 . . . . . . . . . . . . . . . . . 18 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑇 ⊆ (𝐾𝑇))
110109, 81sseldd 3922 . . . . . . . . . . . . . . . . 17 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ (𝐾𝑇))
111110adantlr 712 . . . . . . . . . . . . . . . 16 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ (𝐾𝑇))
11286difeq1d 4056 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) = ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ))
113112dmeqd 5808 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) = dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ))
114 simpll 764 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ∈ Fin)
115 mvdco 19041 . . . . . . . . . . . . . . . . . . . . . 22 dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ⊆ (dom (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∖ I ) ∪ dom (𝑦 ∖ I ))
11616pmtrmvd 19052 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ V ∧ {𝑢, (𝑦𝑢)} ⊆ 𝐷 ∧ {𝑢, (𝑦𝑢)} ≈ 2o) → dom (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∖ I ) = {𝑢, (𝑦𝑢)})
11755, 68, 79, 116syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∖ I ) = {𝑢, (𝑦𝑢)})
118117, 60eqsstrd 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∖ I ) ⊆ dom (𝑦 ∖ I ))
119 ssidd 3944 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom (𝑦 ∖ I ) ⊆ dom (𝑦 ∖ I ))
120118, 119unssd 4120 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (dom (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∖ I ) ∪ dom (𝑦 ∖ I )) ⊆ dom (𝑦 ∖ I ))
121115, 120sstrid 3932 . . . . . . . . . . . . . . . . . . . . 21 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ⊆ dom (𝑦 ∖ I ))
122 fvco2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 Fn 𝐷𝑢𝐷) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})‘(𝑦𝑢)))
12372, 73, 122syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})‘(𝑦𝑢)))
124 prcom 4669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {𝑢, (𝑦𝑢)} = {(𝑦𝑢), 𝑢}
125124fveq2i 6770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) = ((pmTrsp‘𝐷)‘{(𝑦𝑢), 𝑢})
126125fveq1i 6768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})‘(𝑦𝑢)) = (((pmTrsp‘𝐷)‘{(𝑦𝑢), 𝑢})‘(𝑦𝑢))
12767, 59sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (𝑦𝑢) ∈ 𝐷)
12816pmtrprfv 19049 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ V ∧ ((𝑦𝑢) ∈ 𝐷𝑢𝐷 ∧ (𝑦𝑢) ≠ 𝑢)) → (((pmTrsp‘𝐷)‘{(𝑦𝑢), 𝑢})‘(𝑦𝑢)) = 𝑢)
12955, 127, 73, 76, 128syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{(𝑦𝑢), 𝑢})‘(𝑦𝑢)) = 𝑢)
130126, 129eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})‘(𝑦𝑢)) = 𝑢)
131123, 130eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢)
1322, 5symgbasf1o 18970 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦):𝐷1-1-onto𝐷)
133 f1ofn 6710 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦):𝐷1-1-onto𝐷 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) Fn 𝐷)
13492, 132, 1333syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) Fn 𝐷)
135 fnelnfp 7042 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) Fn 𝐷𝑢𝐷) → (𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ↔ ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) ≠ 𝑢))
136135necon2bbid 2987 . . . . . . . . . . . . . . . . . . . . . . 23 (((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) Fn 𝐷𝑢𝐷) → (((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢 ↔ ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I )))
137134, 73, 136syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦)‘𝑢) = 𝑢 ↔ ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I )))
138131, 137mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → ¬ 𝑢 ∈ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ))
139121, 56, 138ssnelpssd 4047 . . . . . . . . . . . . . . . . . . . 20 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ⊊ dom (𝑦 ∖ I ))
140 php3 8983 . . . . . . . . . . . . . . . . . . . 20 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ⊊ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ))
141114, 139, 140syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∘ 𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ))
142113, 141eqbrtrd 5096 . . . . . . . . . . . . . . . . . 18 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ))
143142adantlr 712 . . . . . . . . . . . . . . . . 17 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ))
14491adantlr 712 . . . . . . . . . . . . . . . . 17 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵)
145 ovex 7301 . . . . . . . . . . . . . . . . . . 19 (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ V
146 difeq1 4050 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → (𝑧 ∖ I ) = ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ))
147146dmeqd 5808 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → dom (𝑧 ∖ I ) = dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ))
148147breq1d 5084 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → (dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) ↔ dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I )))
149 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → (𝑧𝐵 ↔ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵))
150 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → (𝑧 ∈ (𝐾𝑇) ↔ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇)))
151149, 150imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → ((𝑧𝐵𝑧 ∈ (𝐾𝑇)) ↔ ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇))))
152148, 151imbi12d 345 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) → ((dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇))) ↔ (dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇)))))
153145, 152spcv 3542 . . . . . . . . . . . . . . . . . 18 (∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇))) → (dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇))))
154153ad2antlr 724 . . . . . . . . . . . . . . . . 17 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (dom ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∖ I ) ≺ dom (𝑦 ∖ I ) → ((((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ 𝐵 → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇))))
155143, 144, 154mp2d 49 . . . . . . . . . . . . . . . 16 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇))
15684submcl 18439 . . . . . . . . . . . . . . . 16 (((𝐾𝑇) ∈ (SubMnd‘𝐺) ∧ ((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)}) ∈ (𝐾𝑇) ∧ (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦) ∈ (𝐾𝑇)) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦)) ∈ (𝐾𝑇))
157106, 111, 155, 156syl3anc 1370 . . . . . . . . . . . . . . 15 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → (((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)(((pmTrsp‘𝐷)‘{𝑢, (𝑦𝑢)})(+g𝐺)𝑦)) ∈ (𝐾𝑇))
158105, 157eqeltrrd 2840 . . . . . . . . . . . . . 14 ((((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) ∧ 𝑢 ∈ dom (𝑦 ∖ I )) → 𝑦 ∈ (𝐾𝑇))
159158ex 413 . . . . . . . . . . . . 13 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → (𝑢 ∈ dom (𝑦 ∖ I ) → 𝑦 ∈ (𝐾𝑇)))
160159exlimdv 1936 . . . . . . . . . . . 12 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → (∃𝑢 𝑢 ∈ dom (𝑦 ∖ I ) → 𝑦 ∈ (𝐾𝑇)))
16154, 160syl5bi 241 . . . . . . . . . . 11 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → (dom (𝑦 ∖ I ) ≠ ∅ → 𝑦 ∈ (𝐾𝑇)))
16253, 161pm2.61dne 3031 . . . . . . . . . 10 (((dom (𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → 𝑦 ∈ (𝐾𝑇))
163162exp31 420 . . . . . . . . 9 (dom (𝑦 ∖ I ) ∈ Fin → (𝑦𝐵 → (∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇))) → 𝑦 ∈ (𝐾𝑇))))
164163com23 86 . . . . . . . 8 (dom (𝑦 ∖ I ) ∈ Fin → (∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇))) → (𝑦𝐵𝑦 ∈ (𝐾𝑇))))
16533, 164syl 17 . . . . . . 7 ((dom (𝑥 ∖ I ) ∈ Fin ∧ dom (𝑦 ∖ I ) ≼ dom (𝑥 ∖ I )) → (∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇))) → (𝑦𝐵𝑦 ∈ (𝐾𝑇))))
1661653impia 1116 . . . . . 6 ((dom (𝑥 ∖ I ) ∈ Fin ∧ dom (𝑦 ∖ I ) ≼ dom (𝑥 ∖ I ) ∧ ∀𝑧(dom (𝑧 ∖ I ) ≺ dom (𝑦 ∖ I ) → (𝑧𝐵𝑧 ∈ (𝐾𝑇)))) → (𝑦𝐵𝑦 ∈ (𝐾𝑇)))
167 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
168 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐾𝑇) ↔ 𝑧 ∈ (𝐾𝑇)))
169167, 168imbi12d 345 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐵𝑦 ∈ (𝐾𝑇)) ↔ (𝑧𝐵𝑧 ∈ (𝐾𝑇))))
170 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
171 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∈ (𝐾𝑇) ↔ 𝑥 ∈ (𝐾𝑇)))
172170, 171imbi12d 345 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦 ∈ (𝐾𝑇)) ↔ (𝑥𝐵𝑥 ∈ (𝐾𝑇))))
173 difeq1 4050 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∖ I ) = (𝑧 ∖ I ))
174173dmeqd 5808 . . . . . 6 (𝑦 = 𝑧 → dom (𝑦 ∖ I ) = dom (𝑧 ∖ I ))
175 difeq1 4050 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∖ I ) = (𝑥 ∖ I ))
176175dmeqd 5808 . . . . . 6 (𝑦 = 𝑥 → dom (𝑦 ∖ I ) = dom (𝑥 ∖ I ))
17731, 32, 166, 169, 172, 174, 176indcardi 9785 . . . . 5 (dom (𝑥 ∖ I ) ∈ Fin → (𝑥𝐵𝑥 ∈ (𝐾𝑇)))
178177impcom 408 . . . 4 ((𝑥𝐵 ∧ dom (𝑥 ∖ I ) ∈ Fin) → 𝑥 ∈ (𝐾𝑇))
1791783adant1 1129 . . 3 ((𝐷𝑉𝑥𝐵 ∧ dom (𝑥 ∖ I ) ∈ Fin) → 𝑥 ∈ (𝐾𝑇))
180179rabssdv 4008 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (𝐾𝑇))
18129, 180eqssd 3938 1 (𝐷𝑉 → (𝐾𝑇) = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  {crab 3068  Vcvv 3430  cdif 3884  cun 3885  wss 3887  wpss 3888  c0 4257  {csn 4562  {cpr 4564   class class class wbr 5074   I cid 5484  dom cdm 5585  ran crn 5586  cres 5587  ccom 5589   Fn wfn 6422  wf 6423  1-1-ontowf1o 6426  cfv 6427  (class class class)co 7268  ωcom 7703  2oc2o 8279  cen 8718  cdom 8719  csdm 8720  Fincfn 8721  Basecbs 16900  +gcplusg 16950  0gc0g 17138  Moorecmre 17279  mrClscmrc 17280  ACScacs 17282  Mndcmnd 18373  SubMndcsubmnd 18417  Grpcgrp 18565  SubGrpcsubg 18737  SymGrpcsymg 18962  pmTrspcpmtr 19037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-er 8486  df-map 8605  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-uz 12571  df-fz 13228  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-tset 16969  df-0g 17140  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-efmnd 18496  df-grp 18568  df-minusg 18569  df-subg 18740  df-symg 18963  df-pmtr 19038
This theorem is referenced by:  symggen2  19067  psgneldm2  19100
  Copyright terms: Public domain W3C validator