MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgpssefmnd Structured version   Visualization version   GIF version

Theorem symgpssefmnd 19048
Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Hypotheses
Ref Expression
symgpssefmnd.m 𝑀 = (EndoFMnd‘𝐴)
symgpssefmnd.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgpssefmnd ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))

Proof of Theorem symgpssefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgt12el 14182 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
2 symgpssefmnd.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐴)
3 eqid 2736 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
42, 3symgbasmap 19029 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴))
5 symgpssefmnd.m . . . . . . . . . 10 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2736 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
75, 6efmndbas 18555 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
84, 7eleqtrrdi 2848 . . . . . . . 8 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀))
98ssriv 3930 . . . . . . 7 (Base‘𝐺) ⊆ (Base‘𝑀)
109a1i 11 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀))
11 fconst6g 6693 . . . . . . . . 9 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴𝐴)
1211adantr 482 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴𝐴)
13123ad2ant2 1134 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴𝐴)
145, 6elefmndbas 18557 . . . . . . . 8 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
15143ad2ant1 1133 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
1613, 15mpbird 257 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀))
17 fconstg 6691 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥})
1817adantr 482 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
19183ad2ant2 1134 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
20 id 22 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
21203expa 1118 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
22213adant1 1130 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
23 nf1oconst 7209 . . . . . . . 8 (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
2419, 22, 23syl2anc 585 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
252, 3elsymgbas 19026 . . . . . . . . 9 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2625notbid 318 . . . . . . . 8 (𝐴𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
27263ad2ant1 1133 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2824, 27mpbird 257 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺))
2910, 16, 28ssnelpssd 4053 . . . . 5 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀))
30293exp 1119 . . . 4 (𝐴𝑉 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))))
3130rexlimdvv 3201 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
3231adantr 482 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
331, 32mpd 15 1 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  wss 3892  wpss 3893  {csn 4565   class class class wbr 5081   × cxp 5598  wf 6454  1-1-ontowf1o 6457  cfv 6458  (class class class)co 7307  m cmap 8646  1c1 10918   < clt 11055  chash 14090  Basecbs 16957  EndoFMndcefmnd 18552  SymGrpcsymg 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-fz 13286  df-hash 14091  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-tset 17026  df-efmnd 18553  df-symg 19020
This theorem is referenced by:  symgvalstruct  19049  symgvalstructOLD  19050
  Copyright terms: Public domain W3C validator