| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgpssefmnd | Structured version Visualization version GIF version | ||
| Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgpssefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgpssefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symgpssefmnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgt12el 14329 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) | |
| 2 | symgpssefmnd.g | . . . . . . . . . 10 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 3 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | symgbasmap 19256 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 5 | symgpssefmnd.m | . . . . . . . . . 10 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 7 | 5, 6 | efmndbas 18745 | . . . . . . . . 9 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 8 | 4, 7 | eleqtrrdi 2839 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀)) |
| 9 | 8 | ssriv 3939 | . . . . . . 7 ⊢ (Base‘𝐺) ⊆ (Base‘𝑀) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀)) |
| 11 | fconst6g 6713 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 14 | 5, 6 | elefmndbas 18747 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 16 | 13, 15 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀)) |
| 17 | fconstg 6711 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 20 | id 22 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | |
| 21 | 20 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 22 | 21 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 23 | nf1oconst 7242 | . . . . . . . 8 ⊢ (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) |
| 25 | 2, 3 | elsymgbas 19253 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 26 | 25 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 27 | 26 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 28 | 24, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺)) |
| 29 | 10, 16, 28 | ssnelpssd 4066 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| 30 | 29 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))) |
| 31 | 30 | rexlimdvv 3185 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3903 ⊊ wpss 3904 {csn 4577 class class class wbr 5092 × cxp 5617 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 1c1 11010 < clt 11149 ♯chash 14237 Basecbs 17120 EndoFMndcefmnd 18742 SymGrpcsymg 19248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-efmnd 18743 df-symg 19249 |
| This theorem is referenced by: symgvalstruct 19276 |
| Copyright terms: Public domain | W3C validator |