Step | Hyp | Ref
| Expression |
1 | | hashgt12el 14382 |
. 2
β’ ((π΄ β π β§ 1 < (β―βπ΄)) β βπ₯ β π΄ βπ¦ β π΄ π₯ β π¦) |
2 | | symgpssefmnd.g |
. . . . . . . . . 10
β’ πΊ = (SymGrpβπ΄) |
3 | | eqid 2733 |
. . . . . . . . . 10
β’
(BaseβπΊ) =
(BaseβπΊ) |
4 | 2, 3 | symgbasmap 19244 |
. . . . . . . . 9
β’ (π₯ β (BaseβπΊ) β π₯ β (π΄ βm π΄)) |
5 | | symgpssefmnd.m |
. . . . . . . . . 10
β’ π = (EndoFMndβπ΄) |
6 | | eqid 2733 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
7 | 5, 6 | efmndbas 18752 |
. . . . . . . . 9
β’
(Baseβπ) =
(π΄ βm π΄) |
8 | 4, 7 | eleqtrrdi 2845 |
. . . . . . . 8
β’ (π₯ β (BaseβπΊ) β π₯ β (Baseβπ)) |
9 | 8 | ssriv 3987 |
. . . . . . 7
β’
(BaseβπΊ)
β (Baseβπ) |
10 | 9 | a1i 11 |
. . . . . 6
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (BaseβπΊ) β (Baseβπ)) |
11 | | fconst6g 6781 |
. . . . . . . . 9
β’ (π₯ β π΄ β (π΄ Γ {π₯}):π΄βΆπ΄) |
12 | 11 | adantr 482 |
. . . . . . . 8
β’ ((π₯ β π΄ β§ π¦ β π΄) β (π΄ Γ {π₯}):π΄βΆπ΄) |
13 | 12 | 3ad2ant2 1135 |
. . . . . . 7
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (π΄ Γ {π₯}):π΄βΆπ΄) |
14 | 5, 6 | elefmndbas 18754 |
. . . . . . . 8
β’ (π΄ β π β ((π΄ Γ {π₯}) β (Baseβπ) β (π΄ Γ {π₯}):π΄βΆπ΄)) |
15 | 14 | 3ad2ant1 1134 |
. . . . . . 7
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β ((π΄ Γ {π₯}) β (Baseβπ) β (π΄ Γ {π₯}):π΄βΆπ΄)) |
16 | 13, 15 | mpbird 257 |
. . . . . 6
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (π΄ Γ {π₯}) β (Baseβπ)) |
17 | | fconstg 6779 |
. . . . . . . . . 10
β’ (π₯ β π΄ β (π΄ Γ {π₯}):π΄βΆ{π₯}) |
18 | 17 | adantr 482 |
. . . . . . . . 9
β’ ((π₯ β π΄ β§ π¦ β π΄) β (π΄ Γ {π₯}):π΄βΆ{π₯}) |
19 | 18 | 3ad2ant2 1135 |
. . . . . . . 8
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (π΄ Γ {π₯}):π΄βΆ{π₯}) |
20 | | id 22 |
. . . . . . . . . 10
β’ ((π₯ β π΄ β§ π¦ β π΄ β§ π₯ β π¦) β (π₯ β π΄ β§ π¦ β π΄ β§ π₯ β π¦)) |
21 | 20 | 3expa 1119 |
. . . . . . . . 9
β’ (((π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (π₯ β π΄ β§ π¦ β π΄ β§ π₯ β π¦)) |
22 | 21 | 3adant1 1131 |
. . . . . . . 8
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (π₯ β π΄ β§ π¦ β π΄ β§ π₯ β π¦)) |
23 | | nf1oconst 7303 |
. . . . . . . 8
β’ (((π΄ Γ {π₯}):π΄βΆ{π₯} β§ (π₯ β π΄ β§ π¦ β π΄ β§ π₯ β π¦)) β Β¬ (π΄ Γ {π₯}):π΄β1-1-ontoβπ΄) |
24 | 19, 22, 23 | syl2anc 585 |
. . . . . . 7
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β Β¬ (π΄ Γ {π₯}):π΄β1-1-ontoβπ΄) |
25 | 2, 3 | elsymgbas 19241 |
. . . . . . . . 9
β’ (π΄ β π β ((π΄ Γ {π₯}) β (BaseβπΊ) β (π΄ Γ {π₯}):π΄β1-1-ontoβπ΄)) |
26 | 25 | notbid 318 |
. . . . . . . 8
β’ (π΄ β π β (Β¬ (π΄ Γ {π₯}) β (BaseβπΊ) β Β¬ (π΄ Γ {π₯}):π΄β1-1-ontoβπ΄)) |
27 | 26 | 3ad2ant1 1134 |
. . . . . . 7
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (Β¬ (π΄ Γ {π₯}) β (BaseβπΊ) β Β¬ (π΄ Γ {π₯}):π΄β1-1-ontoβπ΄)) |
28 | 24, 27 | mpbird 257 |
. . . . . 6
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β Β¬ (π΄ Γ {π₯}) β (BaseβπΊ)) |
29 | 10, 16, 28 | ssnelpssd 4113 |
. . . . 5
β’ ((π΄ β π β§ (π₯ β π΄ β§ π¦ β π΄) β§ π₯ β π¦) β (BaseβπΊ) β (Baseβπ)) |
30 | 29 | 3exp 1120 |
. . . 4
β’ (π΄ β π β ((π₯ β π΄ β§ π¦ β π΄) β (π₯ β π¦ β (BaseβπΊ) β (Baseβπ)))) |
31 | 30 | rexlimdvv 3211 |
. . 3
β’ (π΄ β π β (βπ₯ β π΄ βπ¦ β π΄ π₯ β π¦ β (BaseβπΊ) β (Baseβπ))) |
32 | 31 | adantr 482 |
. 2
β’ ((π΄ β π β§ 1 < (β―βπ΄)) β (βπ₯ β π΄ βπ¦ β π΄ π₯ β π¦ β (BaseβπΊ) β (Baseβπ))) |
33 | 1, 32 | mpd 15 |
1
β’ ((π΄ β π β§ 1 < (β―βπ΄)) β (BaseβπΊ) β (Baseβπ)) |