| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgpssefmnd | Structured version Visualization version GIF version | ||
| Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgpssefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgpssefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symgpssefmnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgt12el 14363 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) | |
| 2 | symgpssefmnd.g | . . . . . . . . . 10 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 3 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | symgbasmap 19283 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 5 | symgpssefmnd.m | . . . . . . . . . 10 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 7 | 5, 6 | efmndbas 18774 | . . . . . . . . 9 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 8 | 4, 7 | eleqtrrdi 2839 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀)) |
| 9 | 8 | ssriv 3947 | . . . . . . 7 ⊢ (Base‘𝐺) ⊆ (Base‘𝑀) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀)) |
| 11 | fconst6g 6731 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 14 | 5, 6 | elefmndbas 18776 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 16 | 13, 15 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀)) |
| 17 | fconstg 6729 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 20 | id 22 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | |
| 21 | 20 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 22 | 21 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 23 | nf1oconst 7262 | . . . . . . . 8 ⊢ (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) |
| 25 | 2, 3 | elsymgbas 19280 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 26 | 25 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 27 | 26 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 28 | 24, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺)) |
| 29 | 10, 16, 28 | ssnelpssd 4074 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| 30 | 29 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))) |
| 31 | 30 | rexlimdvv 3191 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3911 ⊊ wpss 3912 {csn 4585 class class class wbr 5102 × cxp 5629 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 1c1 11045 < clt 11184 ♯chash 14271 Basecbs 17155 EndoFMndcefmnd 18771 SymGrpcsymg 19275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-tset 17215 df-efmnd 18772 df-symg 19276 |
| This theorem is referenced by: symgvalstruct 19303 |
| Copyright terms: Public domain | W3C validator |