MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgpssefmnd Structured version   Visualization version   GIF version

Theorem symgpssefmnd 18517
Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Hypotheses
Ref Expression
symgpssefmnd.m 𝑀 = (EndoFMnd‘𝐴)
symgpssefmnd.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgpssefmnd ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))

Proof of Theorem symgpssefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgt12el 13780 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
2 symgpssefmnd.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐴)
3 eqid 2820 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
42, 3symgbasmap 18498 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴))
5 symgpssefmnd.m . . . . . . . . . 10 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2820 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
75, 6efmndbas 18029 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
84, 7eleqtrrdi 2923 . . . . . . . 8 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀))
98ssriv 3964 . . . . . . 7 (Base‘𝐺) ⊆ (Base‘𝑀)
109a1i 11 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀))
11 fconst6g 6561 . . . . . . . . 9 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴𝐴)
1211adantr 483 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴𝐴)
13123ad2ant2 1129 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴𝐴)
145, 6elefmndbas 18031 . . . . . . . 8 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
15143ad2ant1 1128 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
1613, 15mpbird 259 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀))
17 fconstg 6559 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥})
1817adantr 483 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
19183ad2ant2 1129 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
20 id 22 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
21203expa 1113 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
22213adant1 1125 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
23 nf1oconst 7053 . . . . . . . 8 (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
2419, 22, 23syl2anc 586 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
252, 3elsymgbas 18495 . . . . . . . . 9 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2625notbid 320 . . . . . . . 8 (𝐴𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
27263ad2ant1 1128 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2824, 27mpbird 259 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺))
2910, 16, 28ssnelpssd 4082 . . . . 5 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀))
30293exp 1114 . . . 4 (𝐴𝑉 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))))
3130rexlimdvv 3292 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
3231adantr 483 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
331, 32mpd 15 1 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wrex 3138  wss 3929  wpss 3930  {csn 4560   class class class wbr 5059   × cxp 5546  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7149  m cmap 8399  1c1 10531   < clt 10668  chash 13687  Basecbs 16476  EndoFMndcefmnd 18026  SymGrpcsymg 18488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12890  df-hash 13688  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-tset 16577  df-efmnd 18027  df-symg 18489
This theorem is referenced by:  symgvalstruct  18518
  Copyright terms: Public domain W3C validator