|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > symgpssefmnd | Structured version Visualization version GIF version | ||
| Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) | 
| Ref | Expression | 
|---|---|
| symgpssefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) | 
| symgpssefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) | 
| Ref | Expression | 
|---|---|
| symgpssefmnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashgt12el 14461 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) | |
| 2 | symgpssefmnd.g | . . . . . . . . . 10 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 3 | eqid 2737 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | symgbasmap 19394 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴)) | 
| 5 | symgpssefmnd.m | . . . . . . . . . 10 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 6 | eqid 2737 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 7 | 5, 6 | efmndbas 18884 | . . . . . . . . 9 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) | 
| 8 | 4, 7 | eleqtrrdi 2852 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀)) | 
| 9 | 8 | ssriv 3987 | . . . . . . 7 ⊢ (Base‘𝐺) ⊆ (Base‘𝑀) | 
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀)) | 
| 11 | fconst6g 6797 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐴) | 
| 13 | 12 | 3ad2ant2 1135 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶𝐴) | 
| 14 | 5, 6 | elefmndbas 18886 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) | 
| 15 | 14 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) | 
| 16 | 13, 15 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀)) | 
| 17 | fconstg 6795 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | 
| 19 | 18 | 3ad2ant2 1135 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | 
| 20 | id 22 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | |
| 21 | 20 | 3expa 1119 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | 
| 22 | 21 | 3adant1 1131 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | 
| 23 | nf1oconst 7325 | . . . . . . . 8 ⊢ (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | 
| 25 | 2, 3 | elsymgbas 19391 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) | 
| 26 | 25 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) | 
| 27 | 26 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) | 
| 28 | 24, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺)) | 
| 29 | 10, 16, 28 | ssnelpssd 4115 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀)) | 
| 30 | 29 | 3exp 1120 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))) | 
| 31 | 30 | rexlimdvv 3212 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) | 
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) | 
| 33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3951 ⊊ wpss 3952 {csn 4626 class class class wbr 5143 × cxp 5683 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 1c1 11156 < clt 11295 ♯chash 14369 Basecbs 17247 EndoFMndcefmnd 18881 SymGrpcsymg 19386 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-tset 17316 df-efmnd 18882 df-symg 19387 | 
| This theorem is referenced by: symgvalstruct 19414 symgvalstructOLD 19415 | 
| Copyright terms: Public domain | W3C validator |