Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgpssefmnd | Structured version Visualization version GIF version |
Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
Ref | Expression |
---|---|
symgpssefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
symgpssefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
Ref | Expression |
---|---|
symgpssefmnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashgt12el 14118 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) | |
2 | symgpssefmnd.g | . . . . . . . . . 10 ⊢ 𝐺 = (SymGrp‘𝐴) | |
3 | eqid 2739 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 2, 3 | symgbasmap 18965 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
5 | symgpssefmnd.m | . . . . . . . . . 10 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
6 | eqid 2739 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
7 | 5, 6 | efmndbas 18491 | . . . . . . . . 9 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
8 | 4, 7 | eleqtrrdi 2851 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀)) |
9 | 8 | ssriv 3929 | . . . . . . 7 ⊢ (Base‘𝐺) ⊆ (Base‘𝑀) |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀)) |
11 | fconst6g 6659 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶𝐴) | |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
13 | 12 | 3ad2ant2 1132 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
14 | 5, 6 | elefmndbas 18493 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
15 | 14 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
16 | 13, 15 | mpbird 256 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀)) |
17 | fconstg 6657 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | |
18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
19 | 18 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
20 | id 22 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | |
21 | 20 | 3expa 1116 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
22 | 21 | 3adant1 1128 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
23 | nf1oconst 7170 | . . . . . . . 8 ⊢ (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | |
24 | 19, 22, 23 | syl2anc 583 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) |
25 | 2, 3 | elsymgbas 18962 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
26 | 25 | notbid 317 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
27 | 26 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
28 | 24, 27 | mpbird 256 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺)) |
29 | 10, 16, 28 | ssnelpssd 4051 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
30 | 29 | 3exp 1117 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))) |
31 | 30 | rexlimdvv 3223 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
32 | 31 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 ⊆ wss 3891 ⊊ wpss 3892 {csn 4566 class class class wbr 5078 × cxp 5586 ⟶wf 6426 –1-1-onto→wf1o 6429 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 1c1 10856 < clt 10993 ♯chash 14025 Basecbs 16893 EndoFMndcefmnd 18488 SymGrpcsymg 18955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-tset 16962 df-efmnd 18489 df-symg 18956 |
This theorem is referenced by: symgvalstruct 18985 symgvalstructOLD 18986 |
Copyright terms: Public domain | W3C validator |