| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgpssefmnd | Structured version Visualization version GIF version | ||
| Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgpssefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgpssefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symgpssefmnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgt12el 14445 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) | |
| 2 | symgpssefmnd.g | . . . . . . . . . 10 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 3 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | symgbasmap 19363 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 5 | symgpssefmnd.m | . . . . . . . . . 10 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 6 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 7 | 5, 6 | efmndbas 18854 | . . . . . . . . 9 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 8 | 4, 7 | eleqtrrdi 2846 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀)) |
| 9 | 8 | ssriv 3967 | . . . . . . 7 ⊢ (Base‘𝐺) ⊆ (Base‘𝑀) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀)) |
| 11 | fconst6g 6772 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶𝐴) |
| 14 | 5, 6 | elefmndbas 18856 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴⟶𝐴)) |
| 16 | 13, 15 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀)) |
| 17 | fconstg 6770 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥}) | |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥}) |
| 20 | id 22 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) | |
| 21 | 20 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 22 | 21 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
| 23 | nf1oconst 7303 | . . . . . . . 8 ⊢ (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴) |
| 25 | 2, 3 | elsymgbas 19360 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 26 | 25 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 27 | 26 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴–1-1-onto→𝐴)) |
| 28 | 24, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺)) |
| 29 | 10, 16, 28 | ssnelpssd 4095 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| 30 | 29 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))) |
| 31 | 30 | rexlimdvv 3201 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ⊆ wss 3931 ⊊ wpss 3932 {csn 4606 class class class wbr 5124 × cxp 5657 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 1c1 11135 < clt 11274 ♯chash 14353 Basecbs 17233 EndoFMndcefmnd 18851 SymGrpcsymg 19355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-tset 17295 df-efmnd 18852 df-symg 19356 |
| This theorem is referenced by: symgvalstruct 19383 |
| Copyright terms: Public domain | W3C validator |