MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgpssefmnd Structured version   Visualization version   GIF version

Theorem symgpssefmnd 19437
Description: For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Hypotheses
Ref Expression
symgpssefmnd.m 𝑀 = (EndoFMnd‘𝐴)
symgpssefmnd.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgpssefmnd ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))

Proof of Theorem symgpssefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgt12el 14471 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
2 symgpssefmnd.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐴)
3 eqid 2740 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
42, 3symgbasmap 19418 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴))
5 symgpssefmnd.m . . . . . . . . . 10 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2740 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
75, 6efmndbas 18906 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
84, 7eleqtrrdi 2855 . . . . . . . 8 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝑀))
98ssriv 4012 . . . . . . 7 (Base‘𝐺) ⊆ (Base‘𝑀)
109a1i 11 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊆ (Base‘𝑀))
11 fconst6g 6810 . . . . . . . . 9 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴𝐴)
1211adantr 480 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴𝐴)
13123ad2ant2 1134 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴𝐴)
145, 6elefmndbas 18908 . . . . . . . 8 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
15143ad2ant1 1133 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ((𝐴 × {𝑥}) ∈ (Base‘𝑀) ↔ (𝐴 × {𝑥}):𝐴𝐴))
1613, 15mpbird 257 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}) ∈ (Base‘𝑀))
17 fconstg 6808 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 × {𝑥}):𝐴⟶{𝑥})
1817adantr 480 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
19183ad2ant2 1134 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝐴 × {𝑥}):𝐴⟶{𝑥})
20 id 22 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
21203expa 1118 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
22213adant1 1130 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (𝑥𝐴𝑦𝐴𝑥𝑦))
23 nf1oconst 7341 . . . . . . . 8 (((𝐴 × {𝑥}):𝐴⟶{𝑥} ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
2419, 22, 23syl2anc 583 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴)
252, 3elsymgbas 19415 . . . . . . . . 9 (𝐴𝑉 → ((𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2625notbid 318 . . . . . . . 8 (𝐴𝑉 → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
27263ad2ant1 1133 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺) ↔ ¬ (𝐴 × {𝑥}):𝐴1-1-onto𝐴))
2824, 27mpbird 257 . . . . . 6 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → ¬ (𝐴 × {𝑥}) ∈ (Base‘𝐺))
2910, 16, 28ssnelpssd 4138 . . . . 5 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → (Base‘𝐺) ⊊ (Base‘𝑀))
30293exp 1119 . . . 4 (𝐴𝑉 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀))))
3130rexlimdvv 3218 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
3231adantr 480 . 2 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → (Base‘𝐺) ⊊ (Base‘𝑀)))
331, 32mpd 15 1 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976  wpss 3977  {csn 4648   class class class wbr 5166   × cxp 5698  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  1c1 11185   < clt 11324  chash 14379  Basecbs 17258  EndoFMndcefmnd 18903  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411
This theorem is referenced by:  symgvalstruct  19438  symgvalstructOLD  19439
  Copyright terms: Public domain W3C validator