MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Visualization version   GIF version

Theorem pgpfaclem2 19126
Description: Lemma for pgpfac 19128. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
Assertion
Ref Expression
pgpfaclem2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . . 7 (𝜑𝑊 ∈ (SubGrp‘𝐻))
2 pgpfac.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pgpfac.h . . . . . . . . 9 𝐻 = (𝐺s 𝑈)
43subsubg 18234 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
61, 5mpbid 233 . . . . . 6 (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈))
76simprd 496 . . . . 5 (𝜑𝑊𝑈)
8 pgpfac.f . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
9 pgpfac.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
109subgss 18212 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
112, 10syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
128, 11ssfid 8733 . . . . . . . . . 10 (𝜑𝑈 ∈ Fin)
1312, 7ssfid 8733 . . . . . . . . 9 (𝜑𝑊 ∈ Fin)
14 hashcl 13710 . . . . . . . . 9 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 11948 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℝ)
17 pgpfac.0 . . . . . . . . . . . 12 0 = (0g𝐻)
1817fvexi 6680 . . . . . . . . . . 11 0 ∈ V
19 hashsng 13723 . . . . . . . . . . 11 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2018, 19ax-mp 5 . . . . . . . . . 10 (♯‘{ 0 }) = 1
21 subgrcl 18216 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
22 eqid 2824 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
2322subgacs 18245 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
24 acsmre 16915 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
251, 21, 23, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
26 pgpfac.k . . . . . . . . . . . . . . 15 𝐾 = (mrCls‘(SubGrp‘𝐻))
2725, 26mrcssvd 16886 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻))
283subgbas 18215 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
292, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 = (Base‘𝐻))
3027, 29sseqtrrd 4011 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
3112, 30ssfid 8733 . . . . . . . . . . . 12 (𝜑 → (𝐾‘{𝑋}) ∈ Fin)
32 pgpfac.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋𝑈)
3332, 29eleqtrd 2919 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (Base‘𝐻))
3426mrcsncl 16875 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3525, 33, 34syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3617subg0cl 18219 . . . . . . . . . . . . . . 15 ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋}))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑0 ∈ (𝐾‘{𝑋}))
3837snssd 4740 . . . . . . . . . . . . 13 (𝜑 → { 0 } ⊆ (𝐾‘{𝑋}))
3933snssd 4740 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ (Base‘𝐻))
4025, 26, 39mrcssidd 16888 . . . . . . . . . . . . . 14 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
41 snssg 4715 . . . . . . . . . . . . . . 15 (𝑋𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4232, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4340, 42mpbird 258 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐾‘{𝑋}))
44 pgpfac.oe . . . . . . . . . . . . . . 15 (𝜑 → (𝑂𝑋) = 𝐸)
45 pgpfac.1 . . . . . . . . . . . . . . 15 (𝜑𝐸 ≠ 1)
4644, 45eqnetrd 3087 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝑋) ≠ 1)
47 pgpfac.o . . . . . . . . . . . . . . . . . 18 𝑂 = (od‘𝐻)
4847, 17od1 18608 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → (𝑂0 ) = 1)
491, 21, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂0 ) = 1)
50 elsni 4580 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ { 0 } → 𝑋 = 0 )
5150fveqeq2d 6674 . . . . . . . . . . . . . . . 16 (𝑋 ∈ { 0 } → ((𝑂𝑋) = 1 ↔ (𝑂0 ) = 1))
5249, 51syl5ibrcom 248 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ { 0 } → (𝑂𝑋) = 1))
5352necon3ad 3033 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 }))
5446, 53mpd 15 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ { 0 })
5538, 43, 54ssnelpssd 4092 . . . . . . . . . . . 12 (𝜑 → { 0 } ⊊ (𝐾‘{𝑋}))
56 php3 8695 . . . . . . . . . . . 12 (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋}))
5731, 55, 56syl2anc 584 . . . . . . . . . . 11 (𝜑 → { 0 } ≺ (𝐾‘{𝑋}))
58 snfi 8586 . . . . . . . . . . . 12 { 0 } ∈ Fin
59 hashsdom 13735 . . . . . . . . . . . 12 (({ 0 } ∈ Fin ∧ (𝐾‘{𝑋}) ∈ Fin) → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6058, 31, 59sylancr 587 . . . . . . . . . . 11 (𝜑 → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6157, 60mpbird 258 . . . . . . . . . 10 (𝜑 → (♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})))
6220, 61eqbrtrrid 5098 . . . . . . . . 9 (𝜑 → 1 < (♯‘(𝐾‘{𝑋})))
63 1red 10634 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
64 hashcl 13710 . . . . . . . . . . . 12 ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6531, 64syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6665nn0red 11948 . . . . . . . . . 10 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ)
6717subg0cl 18219 . . . . . . . . . . . . 13 (𝑊 ∈ (SubGrp‘𝐻) → 0𝑊)
68 ne0i 4303 . . . . . . . . . . . . 13 ( 0𝑊𝑊 ≠ ∅)
691, 67, 683syl 18 . . . . . . . . . . . 12 (𝜑𝑊 ≠ ∅)
70 hashnncl 13720 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7113, 70syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7269, 71mpbird 258 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
7372nngt0d 11678 . . . . . . . . . 10 (𝜑 → 0 < (♯‘𝑊))
74 ltmul1 11482 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((♯‘𝑊) ∈ ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7563, 66, 16, 73, 74syl112anc 1368 . . . . . . . . 9 (𝜑 → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7662, 75mpbid 233 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
7716recnd 10661 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
7877mulid2d 10651 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) = (♯‘𝑊))
79 pgpfac.l . . . . . . . . . 10 = (LSSum‘𝐻)
80 eqid 2824 . . . . . . . . . 10 (Cntz‘𝐻) = (Cntz‘𝐻)
81 pgpfac.i . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
82 pgpfac.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ Abel)
833subgabl 18878 . . . . . . . . . . . 12 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
8482, 2, 83syl2anc 584 . . . . . . . . . . 11 (𝜑𝐻 ∈ Abel)
8580, 84, 35, 1ablcntzd 18899 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊))
8679, 17, 80, 35, 1, 81, 85, 31, 13lsmhash 18753 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
87 pgpfac.s . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
8887fveq2d 6670 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = (♯‘𝑈))
8986, 88eqtr3d 2862 . . . . . . . 8 (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈))
9076, 78, 893brtr3d 5093 . . . . . . 7 (𝜑 → (♯‘𝑊) < (♯‘𝑈))
9116, 90ltned 10768 . . . . . 6 (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈))
92 fveq2 6666 . . . . . . 7 (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈))
9392necon3i 3052 . . . . . 6 ((♯‘𝑊) ≠ (♯‘𝑈) → 𝑊𝑈)
9491, 93syl 17 . . . . 5 (𝜑𝑊𝑈)
95 df-pss 3957 . . . . 5 (𝑊𝑈 ↔ (𝑊𝑈𝑊𝑈))
967, 94, 95sylanbrc 583 . . . 4 (𝜑𝑊𝑈)
97 psseq1 4067 . . . . . 6 (𝑡 = 𝑊 → (𝑡𝑈𝑊𝑈))
98 eqeq2 2836 . . . . . . . 8 (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊))
9998anbi2d 628 . . . . . . 7 (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10099rexbidv 3301 . . . . . 6 (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10197, 100imbi12d 346 . . . . 5 (𝑡 = 𝑊 → ((𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))))
102 pgpfac.a . . . . 5 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
1036simpld 495 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
104101, 102, 103rspcdva 3628 . . . 4 (𝜑 → (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10596, 104mpd 15 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))
106 breq2 5066 . . . . 5 (𝑠 = 𝑎 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑎))
107 oveq2 7159 . . . . . 6 (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎))
108107eqeq1d 2826 . . . . 5 (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊))
109106, 108anbi12d 630 . . . 4 (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)))
110109cbvrexvw 3455 . . 3 (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
111105, 110sylib 219 . 2 (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
112 pgpfac.c . . 3 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
11382adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel)
114 pgpfac.p . . . 4 (𝜑𝑃 pGrp 𝐺)
115114adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺)
1168adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin)
1172adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
118102adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
119 pgpfac.e . . 3 𝐸 = (gEx‘𝐻)
12045adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1)
12132adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋𝑈)
12244adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂𝑋) = 𝐸)
1231adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻))
12481adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12587adantr 481 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
126 simprl 767 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶)
127 simprrl 777 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎)
128 simprrr 778 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊)
129 eqid 2824 . . 3 (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩)
1309, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129pgpfaclem1 19125 . 2 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
131111, 130rexlimddv 3295 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020  wral 3142  wrex 3143  {crab 3146  Vcvv 3499  cin 3938  wss 3939  wpss 3940  c0 4294  {csn 4563   class class class wbr 5062  dom cdm 5553  ran crn 5554  cfv 6351  (class class class)co 7151  csdm 8500  Fincfn 8501  cr 10528  0cc0 10529  1c1 10530   · cmul 10534   < clt 10667  cn 11630  0cn0 11889  chash 13683  Word cword 13854   ++ cconcat 13915  ⟨“cs1 13942  Basecbs 16475  s cress 16476  0gc0g 16705  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18035  SubGrpcsubg 18205  Cntzccntz 18377  odcod 18574  gExcgex 18575   pGrp cpgp 18576  LSSumclsm 18681  Abelcabl 18829  CycGrpccyg 18918   DProd cdprd 19037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-ghm 18288  df-gim 18331  df-cntz 18379  df-oppg 18406  df-od 18578  df-pgp 18580  df-lsm 18683  df-pj1 18684  df-cmn 18830  df-abl 18831  df-cyg 18919  df-dprd 19039
This theorem is referenced by:  pgpfaclem3  19127
  Copyright terms: Public domain W3C validator