MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Visualization version   GIF version

Theorem pgpfaclem2 20102
Description: Lemma for pgpfac 20104. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
Assertion
Ref Expression
pgpfaclem2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . . 7 (𝜑𝑊 ∈ (SubGrp‘𝐻))
2 pgpfac.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pgpfac.h . . . . . . . . 9 𝐻 = (𝐺s 𝑈)
43subsubg 19167 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
61, 5mpbid 232 . . . . . 6 (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈))
76simprd 495 . . . . 5 (𝜑𝑊𝑈)
8 pgpfac.f . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
9 pgpfac.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
109subgss 19145 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
112, 10syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
128, 11ssfid 9301 . . . . . . . . . 10 (𝜑𝑈 ∈ Fin)
1312, 7ssfid 9301 . . . . . . . . 9 (𝜑𝑊 ∈ Fin)
14 hashcl 14395 . . . . . . . . 9 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 12588 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℝ)
17 pgpfac.0 . . . . . . . . . . . 12 0 = (0g𝐻)
1817fvexi 6920 . . . . . . . . . . 11 0 ∈ V
19 hashsng 14408 . . . . . . . . . . 11 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2018, 19ax-mp 5 . . . . . . . . . 10 (♯‘{ 0 }) = 1
21 subgrcl 19149 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
22 eqid 2737 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
2322subgacs 19179 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
24 acsmre 17695 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
251, 21, 23, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
26 pgpfac.k . . . . . . . . . . . . . . 15 𝐾 = (mrCls‘(SubGrp‘𝐻))
2725, 26mrcssvd 17666 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻))
283subgbas 19148 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
292, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 = (Base‘𝐻))
3027, 29sseqtrrd 4021 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
3112, 30ssfid 9301 . . . . . . . . . . . 12 (𝜑 → (𝐾‘{𝑋}) ∈ Fin)
32 pgpfac.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋𝑈)
3332, 29eleqtrd 2843 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (Base‘𝐻))
3426mrcsncl 17655 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3525, 33, 34syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3617subg0cl 19152 . . . . . . . . . . . . . . 15 ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋}))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑0 ∈ (𝐾‘{𝑋}))
3837snssd 4809 . . . . . . . . . . . . 13 (𝜑 → { 0 } ⊆ (𝐾‘{𝑋}))
3933snssd 4809 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ (Base‘𝐻))
4025, 26, 39mrcssidd 17668 . . . . . . . . . . . . . 14 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
41 snssg 4783 . . . . . . . . . . . . . . 15 (𝑋𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4232, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4340, 42mpbird 257 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐾‘{𝑋}))
44 pgpfac.oe . . . . . . . . . . . . . . 15 (𝜑 → (𝑂𝑋) = 𝐸)
45 pgpfac.1 . . . . . . . . . . . . . . 15 (𝜑𝐸 ≠ 1)
4644, 45eqnetrd 3008 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝑋) ≠ 1)
47 pgpfac.o . . . . . . . . . . . . . . . . . 18 𝑂 = (od‘𝐻)
4847, 17od1 19577 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → (𝑂0 ) = 1)
491, 21, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂0 ) = 1)
50 elsni 4643 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ { 0 } → 𝑋 = 0 )
5150fveqeq2d 6914 . . . . . . . . . . . . . . . 16 (𝑋 ∈ { 0 } → ((𝑂𝑋) = 1 ↔ (𝑂0 ) = 1))
5249, 51syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ { 0 } → (𝑂𝑋) = 1))
5352necon3ad 2953 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 }))
5446, 53mpd 15 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ { 0 })
5538, 43, 54ssnelpssd 4115 . . . . . . . . . . . 12 (𝜑 → { 0 } ⊊ (𝐾‘{𝑋}))
56 php3 9249 . . . . . . . . . . . 12 (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋}))
5731, 55, 56syl2anc 584 . . . . . . . . . . 11 (𝜑 → { 0 } ≺ (𝐾‘{𝑋}))
58 snfi 9083 . . . . . . . . . . . 12 { 0 } ∈ Fin
59 hashsdom 14420 . . . . . . . . . . . 12 (({ 0 } ∈ Fin ∧ (𝐾‘{𝑋}) ∈ Fin) → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6058, 31, 59sylancr 587 . . . . . . . . . . 11 (𝜑 → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6157, 60mpbird 257 . . . . . . . . . 10 (𝜑 → (♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})))
6220, 61eqbrtrrid 5179 . . . . . . . . 9 (𝜑 → 1 < (♯‘(𝐾‘{𝑋})))
63 1red 11262 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
64 hashcl 14395 . . . . . . . . . . . 12 ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6531, 64syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6665nn0red 12588 . . . . . . . . . 10 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ)
6717subg0cl 19152 . . . . . . . . . . . . 13 (𝑊 ∈ (SubGrp‘𝐻) → 0𝑊)
68 ne0i 4341 . . . . . . . . . . . . 13 ( 0𝑊𝑊 ≠ ∅)
691, 67, 683syl 18 . . . . . . . . . . . 12 (𝜑𝑊 ≠ ∅)
70 hashnncl 14405 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7113, 70syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7269, 71mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
7372nngt0d 12315 . . . . . . . . . 10 (𝜑 → 0 < (♯‘𝑊))
74 ltmul1 12117 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((♯‘𝑊) ∈ ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7563, 66, 16, 73, 74syl112anc 1376 . . . . . . . . 9 (𝜑 → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7662, 75mpbid 232 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
7716recnd 11289 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
7877mullidd 11279 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) = (♯‘𝑊))
79 pgpfac.l . . . . . . . . . 10 = (LSSum‘𝐻)
80 eqid 2737 . . . . . . . . . 10 (Cntz‘𝐻) = (Cntz‘𝐻)
81 pgpfac.i . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
82 pgpfac.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ Abel)
833subgabl 19854 . . . . . . . . . . . 12 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
8482, 2, 83syl2anc 584 . . . . . . . . . . 11 (𝜑𝐻 ∈ Abel)
8580, 84, 35, 1ablcntzd 19875 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊))
8679, 17, 80, 35, 1, 81, 85, 31, 13lsmhash 19723 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
87 pgpfac.s . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
8887fveq2d 6910 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = (♯‘𝑈))
8986, 88eqtr3d 2779 . . . . . . . 8 (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈))
9076, 78, 893brtr3d 5174 . . . . . . 7 (𝜑 → (♯‘𝑊) < (♯‘𝑈))
9116, 90ltned 11397 . . . . . 6 (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈))
92 fveq2 6906 . . . . . . 7 (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈))
9392necon3i 2973 . . . . . 6 ((♯‘𝑊) ≠ (♯‘𝑈) → 𝑊𝑈)
9491, 93syl 17 . . . . 5 (𝜑𝑊𝑈)
95 df-pss 3971 . . . . 5 (𝑊𝑈 ↔ (𝑊𝑈𝑊𝑈))
967, 94, 95sylanbrc 583 . . . 4 (𝜑𝑊𝑈)
97 psseq1 4090 . . . . . 6 (𝑡 = 𝑊 → (𝑡𝑈𝑊𝑈))
98 eqeq2 2749 . . . . . . . 8 (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊))
9998anbi2d 630 . . . . . . 7 (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10099rexbidv 3179 . . . . . 6 (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10197, 100imbi12d 344 . . . . 5 (𝑡 = 𝑊 → ((𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))))
102 pgpfac.a . . . . 5 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
1036simpld 494 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
104101, 102, 103rspcdva 3623 . . . 4 (𝜑 → (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10596, 104mpd 15 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))
106 breq2 5147 . . . . 5 (𝑠 = 𝑎 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑎))
107 oveq2 7439 . . . . . 6 (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎))
108107eqeq1d 2739 . . . . 5 (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊))
109106, 108anbi12d 632 . . . 4 (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)))
110109cbvrexvw 3238 . . 3 (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
111105, 110sylib 218 . 2 (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
112 pgpfac.c . . 3 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
11382adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel)
114 pgpfac.p . . . 4 (𝜑𝑃 pGrp 𝐺)
115114adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺)
1168adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin)
1172adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
118102adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
119 pgpfac.e . . 3 𝐸 = (gEx‘𝐻)
12045adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1)
12132adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋𝑈)
12244adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂𝑋) = 𝐸)
1231adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻))
12481adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12587adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
126 simprl 771 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶)
127 simprrl 781 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎)
128 simprrr 782 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊)
129 eqid 2737 . . 3 (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩)
1309, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129pgpfaclem1 20101 . 2 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
131111, 130rexlimddv 3161 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  wss 3951  wpss 3952  c0 4333  {csn 4626   class class class wbr 5143  dom cdm 5685  ran crn 5686  cfv 6561  (class class class)co 7431  csdm 8984  Fincfn 8985  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cn 12266  0cn0 12526  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  Basecbs 17247  s cress 17274  0gc0g 17484  Moorecmre 17625  mrClscmrc 17626  ACScacs 17628  Grpcgrp 18951  SubGrpcsubg 19138  Cntzccntz 19333  odcod 19542  gExcgex 19543   pGrp cpgp 19544  LSSumclsm 19652  Abelcabl 19799  CycGrpccyg 19895   DProd cdprd 20013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-od 19546  df-pgp 19548  df-lsm 19654  df-pj1 19655  df-cmn 19800  df-abl 19801  df-cyg 19896  df-dprd 20015
This theorem is referenced by:  pgpfaclem3  20103
  Copyright terms: Public domain W3C validator