MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Visualization version   GIF version

Theorem pgpfaclem2 19197
Description: Lemma for pgpfac 19199. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
Assertion
Ref Expression
pgpfaclem2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . . 7 (𝜑𝑊 ∈ (SubGrp‘𝐻))
2 pgpfac.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pgpfac.h . . . . . . . . 9 𝐻 = (𝐺s 𝑈)
43subsubg 18294 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
61, 5mpbid 235 . . . . . 6 (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈))
76simprd 499 . . . . 5 (𝜑𝑊𝑈)
8 pgpfac.f . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
9 pgpfac.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
109subgss 18272 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
112, 10syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
128, 11ssfid 8725 . . . . . . . . . 10 (𝜑𝑈 ∈ Fin)
1312, 7ssfid 8725 . . . . . . . . 9 (𝜑𝑊 ∈ Fin)
14 hashcl 13713 . . . . . . . . 9 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 11944 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℝ)
17 pgpfac.0 . . . . . . . . . . . 12 0 = (0g𝐻)
1817fvexi 6659 . . . . . . . . . . 11 0 ∈ V
19 hashsng 13726 . . . . . . . . . . 11 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2018, 19ax-mp 5 . . . . . . . . . 10 (♯‘{ 0 }) = 1
21 subgrcl 18276 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
22 eqid 2798 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
2322subgacs 18305 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
24 acsmre 16915 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
251, 21, 23, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
26 pgpfac.k . . . . . . . . . . . . . . 15 𝐾 = (mrCls‘(SubGrp‘𝐻))
2725, 26mrcssvd 16886 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻))
283subgbas 18275 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
292, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 = (Base‘𝐻))
3027, 29sseqtrrd 3956 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
3112, 30ssfid 8725 . . . . . . . . . . . 12 (𝜑 → (𝐾‘{𝑋}) ∈ Fin)
32 pgpfac.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋𝑈)
3332, 29eleqtrd 2892 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (Base‘𝐻))
3426mrcsncl 16875 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3525, 33, 34syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3617subg0cl 18279 . . . . . . . . . . . . . . 15 ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋}))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑0 ∈ (𝐾‘{𝑋}))
3837snssd 4702 . . . . . . . . . . . . 13 (𝜑 → { 0 } ⊆ (𝐾‘{𝑋}))
3933snssd 4702 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ (Base‘𝐻))
4025, 26, 39mrcssidd 16888 . . . . . . . . . . . . . 14 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
41 snssg 4678 . . . . . . . . . . . . . . 15 (𝑋𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4232, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4340, 42mpbird 260 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐾‘{𝑋}))
44 pgpfac.oe . . . . . . . . . . . . . . 15 (𝜑 → (𝑂𝑋) = 𝐸)
45 pgpfac.1 . . . . . . . . . . . . . . 15 (𝜑𝐸 ≠ 1)
4644, 45eqnetrd 3054 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝑋) ≠ 1)
47 pgpfac.o . . . . . . . . . . . . . . . . . 18 𝑂 = (od‘𝐻)
4847, 17od1 18678 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → (𝑂0 ) = 1)
491, 21, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂0 ) = 1)
50 elsni 4542 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ { 0 } → 𝑋 = 0 )
5150fveqeq2d 6653 . . . . . . . . . . . . . . . 16 (𝑋 ∈ { 0 } → ((𝑂𝑋) = 1 ↔ (𝑂0 ) = 1))
5249, 51syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ { 0 } → (𝑂𝑋) = 1))
5352necon3ad 3000 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 }))
5446, 53mpd 15 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ { 0 })
5538, 43, 54ssnelpssd 4040 . . . . . . . . . . . 12 (𝜑 → { 0 } ⊊ (𝐾‘{𝑋}))
56 php3 8687 . . . . . . . . . . . 12 (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋}))
5731, 55, 56syl2anc 587 . . . . . . . . . . 11 (𝜑 → { 0 } ≺ (𝐾‘{𝑋}))
58 snfi 8577 . . . . . . . . . . . 12 { 0 } ∈ Fin
59 hashsdom 13738 . . . . . . . . . . . 12 (({ 0 } ∈ Fin ∧ (𝐾‘{𝑋}) ∈ Fin) → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6058, 31, 59sylancr 590 . . . . . . . . . . 11 (𝜑 → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6157, 60mpbird 260 . . . . . . . . . 10 (𝜑 → (♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})))
6220, 61eqbrtrrid 5066 . . . . . . . . 9 (𝜑 → 1 < (♯‘(𝐾‘{𝑋})))
63 1red 10631 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
64 hashcl 13713 . . . . . . . . . . . 12 ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6531, 64syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6665nn0red 11944 . . . . . . . . . 10 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ)
6717subg0cl 18279 . . . . . . . . . . . . 13 (𝑊 ∈ (SubGrp‘𝐻) → 0𝑊)
68 ne0i 4250 . . . . . . . . . . . . 13 ( 0𝑊𝑊 ≠ ∅)
691, 67, 683syl 18 . . . . . . . . . . . 12 (𝜑𝑊 ≠ ∅)
70 hashnncl 13723 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7113, 70syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7269, 71mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
7372nngt0d 11674 . . . . . . . . . 10 (𝜑 → 0 < (♯‘𝑊))
74 ltmul1 11479 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((♯‘𝑊) ∈ ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7563, 66, 16, 73, 74syl112anc 1371 . . . . . . . . 9 (𝜑 → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7662, 75mpbid 235 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
7716recnd 10658 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
7877mulid2d 10648 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) = (♯‘𝑊))
79 pgpfac.l . . . . . . . . . 10 = (LSSum‘𝐻)
80 eqid 2798 . . . . . . . . . 10 (Cntz‘𝐻) = (Cntz‘𝐻)
81 pgpfac.i . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
82 pgpfac.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ Abel)
833subgabl 18949 . . . . . . . . . . . 12 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
8482, 2, 83syl2anc 587 . . . . . . . . . . 11 (𝜑𝐻 ∈ Abel)
8580, 84, 35, 1ablcntzd 18970 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊))
8679, 17, 80, 35, 1, 81, 85, 31, 13lsmhash 18823 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
87 pgpfac.s . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
8887fveq2d 6649 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = (♯‘𝑈))
8986, 88eqtr3d 2835 . . . . . . . 8 (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈))
9076, 78, 893brtr3d 5061 . . . . . . 7 (𝜑 → (♯‘𝑊) < (♯‘𝑈))
9116, 90ltned 10765 . . . . . 6 (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈))
92 fveq2 6645 . . . . . . 7 (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈))
9392necon3i 3019 . . . . . 6 ((♯‘𝑊) ≠ (♯‘𝑈) → 𝑊𝑈)
9491, 93syl 17 . . . . 5 (𝜑𝑊𝑈)
95 df-pss 3900 . . . . 5 (𝑊𝑈 ↔ (𝑊𝑈𝑊𝑈))
967, 94, 95sylanbrc 586 . . . 4 (𝜑𝑊𝑈)
97 psseq1 4015 . . . . . 6 (𝑡 = 𝑊 → (𝑡𝑈𝑊𝑈))
98 eqeq2 2810 . . . . . . . 8 (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊))
9998anbi2d 631 . . . . . . 7 (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10099rexbidv 3256 . . . . . 6 (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10197, 100imbi12d 348 . . . . 5 (𝑡 = 𝑊 → ((𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))))
102 pgpfac.a . . . . 5 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
1036simpld 498 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
104101, 102, 103rspcdva 3573 . . . 4 (𝜑 → (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10596, 104mpd 15 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))
106 breq2 5034 . . . . 5 (𝑠 = 𝑎 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑎))
107 oveq2 7143 . . . . . 6 (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎))
108107eqeq1d 2800 . . . . 5 (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊))
109106, 108anbi12d 633 . . . 4 (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)))
110109cbvrexvw 3397 . . 3 (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
111105, 110sylib 221 . 2 (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
112 pgpfac.c . . 3 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
11382adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel)
114 pgpfac.p . . . 4 (𝜑𝑃 pGrp 𝐺)
115114adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺)
1168adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin)
1172adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
118102adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
119 pgpfac.e . . 3 𝐸 = (gEx‘𝐻)
12045adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1)
12132adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋𝑈)
12244adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂𝑋) = 𝐸)
1231adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻))
12481adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12587adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
126 simprl 770 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶)
127 simprrl 780 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎)
128 simprrr 781 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊)
129 eqid 2798 . . 3 (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩)
1309, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129pgpfaclem1 19196 . 2 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
131111, 130rexlimddv 3250 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  wpss 3882  c0 4243  {csn 4525   class class class wbr 5030  dom cdm 5519  ran crn 5520  cfv 6324  (class class class)co 7135  csdm 8491  Fincfn 8492  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cn 11625  0cn0 11885  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940  Basecbs 16475  s cress 16476  0gc0g 16705  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18095  SubGrpcsubg 18265  Cntzccntz 18437  odcod 18644  gExcgex 18645   pGrp cpgp 18646  LSSumclsm 18751  Abelcabl 18899  CycGrpccyg 18989   DProd cdprd 19108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-od 18648  df-pgp 18650  df-lsm 18753  df-pj1 18754  df-cmn 18900  df-abl 18901  df-cyg 18990  df-dprd 19110
This theorem is referenced by:  pgpfaclem3  19198
  Copyright terms: Public domain W3C validator