Step | Hyp | Ref
| Expression |
1 | | pgpfac.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) |
2 | | pgpfac.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
3 | | pgpfac.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐺 ↾s 𝑈) |
4 | 3 | subsubg 18693 |
. . . . . . . 8
⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
6 | 1, 5 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈)) |
7 | 6 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑈) |
8 | | pgpfac.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Fin) |
9 | | pgpfac.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
10 | 9 | subgss 18671 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
11 | 2, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
12 | 8, 11 | ssfid 8971 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ Fin) |
13 | 12, 7 | ssfid 8971 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Fin) |
14 | | hashcl 13999 |
. . . . . . . . 9
⊢ (𝑊 ∈ Fin →
(♯‘𝑊) ∈
ℕ0) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ0) |
16 | 15 | nn0red 12224 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑊) ∈
ℝ) |
17 | | pgpfac.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐻) |
18 | 17 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
19 | | hashsng 14012 |
. . . . . . . . . . 11
⊢ ( 0 ∈ V
→ (♯‘{ 0 }) = 1) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . 10
⊢
(♯‘{ 0 }) = 1 |
21 | | subgrcl 18675 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp) |
22 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐻) =
(Base‘𝐻) |
23 | 22 | subgacs 18704 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
24 | | acsmre 17278 |
. . . . . . . . . . . . . . . 16
⊢
((SubGrp‘𝐻)
∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
25 | 1, 21, 23, 24 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(Moore‘(Base‘𝐻))) |
26 | | pgpfac.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐻)) |
27 | 25, 26 | mrcssvd 17249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻)) |
28 | 3 | subgbas 18674 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻)) |
29 | 2, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 = (Base‘𝐻)) |
30 | 27, 29 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈) |
31 | 12, 30 | ssfid 8971 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ Fin) |
32 | | pgpfac.x |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
33 | 32, 29 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
34 | 26 | mrcsncl 17238 |
. . . . . . . . . . . . . . . 16
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
35 | 25, 33, 34 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
36 | 17 | subg0cl 18678 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋})) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ (𝐾‘{𝑋})) |
38 | 37 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ (𝜑 → { 0 } ⊆ (𝐾‘{𝑋})) |
39 | 33 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑋} ⊆ (Base‘𝐻)) |
40 | 25, 26, 39 | mrcssidd 17251 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
41 | | snssg 4715 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ 𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
42 | 32, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
43 | 40, 42 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ (𝐾‘{𝑋})) |
44 | | pgpfac.oe |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) |
45 | | pgpfac.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ≠ 1) |
46 | 44, 45 | eqnetrd 3010 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑂‘𝑋) ≠ 1) |
47 | | pgpfac.o |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑂 = (od‘𝐻) |
48 | 47, 17 | od1 19081 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 ∈ Grp → (𝑂‘ 0 ) = 1) |
49 | 1, 21, 48 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑂‘ 0 ) = 1) |
50 | | elsni 4575 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) |
51 | 50 | fveqeq2d 6764 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ { 0 } → ((𝑂‘𝑋) = 1 ↔ (𝑂‘ 0 ) = 1)) |
52 | 49, 51 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ { 0 } → (𝑂‘𝑋) = 1)) |
53 | 52 | necon3ad 2955 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 })) |
54 | 46, 53 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
55 | 38, 43, 54 | ssnelpssd 4043 |
. . . . . . . . . . . 12
⊢ (𝜑 → { 0 } ⊊ (𝐾‘{𝑋})) |
56 | | php3 8899 |
. . . . . . . . . . . 12
⊢ (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋})) |
57 | 31, 55, 56 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → { 0 } ≺ (𝐾‘{𝑋})) |
58 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ { 0 } ∈
Fin |
59 | | hashsdom 14024 |
. . . . . . . . . . . 12
⊢ (({ 0 } ∈ Fin
∧ (𝐾‘{𝑋}) ∈ Fin) →
((♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
60 | 58, 31, 59 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
61 | 57, 60 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋}))) |
62 | 20, 61 | eqbrtrrid 5106 |
. . . . . . . . 9
⊢ (𝜑 → 1 <
(♯‘(𝐾‘{𝑋}))) |
63 | | 1red 10907 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
64 | | hashcl 13999 |
. . . . . . . . . . . 12
⊢ ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈
ℕ0) |
65 | 31, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐾‘{𝑋})) ∈
ℕ0) |
66 | 65 | nn0red 12224 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ) |
67 | 17 | subg0cl 18678 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 0 ∈ 𝑊) |
68 | | ne0i 4265 |
. . . . . . . . . . . . 13
⊢ ( 0 ∈ 𝑊 → 𝑊 ≠ ∅) |
69 | 1, 67, 68 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ≠ ∅) |
70 | | hashnncl 14009 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Fin →
((♯‘𝑊) ∈
ℕ ↔ 𝑊 ≠
∅)) |
71 | 13, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) |
72 | 69, 71 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ) |
73 | 72 | nngt0d 11952 |
. . . . . . . . . 10
⊢ (𝜑 → 0 <
(♯‘𝑊)) |
74 | | ltmul1 11755 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧
((♯‘𝑊) ∈
ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))) |
75 | 63, 66, 16, 73, 74 | syl112anc 1372 |
. . . . . . . . 9
⊢ (𝜑 → (1 <
(♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))) |
76 | 62, 75 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (1 ·
(♯‘𝑊)) <
((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))) |
77 | 16 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑊) ∈
ℂ) |
78 | 77 | mulid2d 10924 |
. . . . . . . 8
⊢ (𝜑 → (1 ·
(♯‘𝑊)) =
(♯‘𝑊)) |
79 | | pgpfac.l |
. . . . . . . . . 10
⊢ ⊕ =
(LSSum‘𝐻) |
80 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Cntz‘𝐻) =
(Cntz‘𝐻) |
81 | | pgpfac.i |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
82 | | pgpfac.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Abel) |
83 | 3 | subgabl 19352 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
84 | 82, 2, 83 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ Abel) |
85 | 80, 84, 35, 1 | ablcntzd 19373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊)) |
86 | 79, 17, 80, 35, 1, 81, 85, 31, 13 | lsmhash 19226 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘((𝐾‘{𝑋}) ⊕ 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))) |
87 | | pgpfac.s |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
88 | 87 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘((𝐾‘{𝑋}) ⊕ 𝑊)) = (♯‘𝑈)) |
89 | 86, 88 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈)) |
90 | 76, 78, 89 | 3brtr3d 5101 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑊) < (♯‘𝑈)) |
91 | 16, 90 | ltned 11041 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈)) |
92 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈)) |
93 | 92 | necon3i 2975 |
. . . . . 6
⊢
((♯‘𝑊)
≠ (♯‘𝑈)
→ 𝑊 ≠ 𝑈) |
94 | 91, 93 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ≠ 𝑈) |
95 | | df-pss 3902 |
. . . . 5
⊢ (𝑊 ⊊ 𝑈 ↔ (𝑊 ⊆ 𝑈 ∧ 𝑊 ≠ 𝑈)) |
96 | 7, 94, 95 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → 𝑊 ⊊ 𝑈) |
97 | | psseq1 4018 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (𝑡 ⊊ 𝑈 ↔ 𝑊 ⊊ 𝑈)) |
98 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊)) |
99 | 98 | anbi2d 628 |
. . . . . . 7
⊢ (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
100 | 99 | rexbidv 3225 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
101 | 97, 100 | imbi12d 344 |
. . . . 5
⊢ (𝑡 = 𝑊 → ((𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))) |
102 | | pgpfac.a |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
103 | 6 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
104 | 101, 102,
103 | rspcdva 3554 |
. . . 4
⊢ (𝜑 → (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
105 | 96, 104 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)) |
106 | | breq2 5074 |
. . . . 5
⊢ (𝑠 = 𝑎 → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑎)) |
107 | | oveq2 7263 |
. . . . . 6
⊢ (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎)) |
108 | 107 | eqeq1d 2740 |
. . . . 5
⊢ (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊)) |
109 | 106, 108 | anbi12d 630 |
. . . 4
⊢ (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) |
110 | 109 | cbvrexvw 3373 |
. . 3
⊢
(∃𝑠 ∈
Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
111 | 105, 110 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
112 | | pgpfac.c |
. . 3
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
113 | 82 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel) |
114 | | pgpfac.p |
. . . 4
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
115 | 114 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺) |
116 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin) |
117 | 2 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺)) |
118 | 102 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
119 | | pgpfac.e |
. . 3
⊢ 𝐸 = (gEx‘𝐻) |
120 | 45 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1) |
121 | 32 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋 ∈ 𝑈) |
122 | 44 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂‘𝑋) = 𝐸) |
123 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻)) |
124 | 81 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
125 | 87 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
126 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶) |
127 | | simprrl 777 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎) |
128 | | simprrr 778 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊) |
129 | | eqid 2738 |
. . 3
⊢ (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) = (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) |
130 | 9, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 | pgpfaclem1 19599 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |
131 | 111, 130 | rexlimddv 3219 |
1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |