MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Visualization version   GIF version

Theorem pgpfaclem2 19287
Description: Lemma for pgpfac 19289. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
Assertion
Ref Expression
pgpfaclem2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . . 7 (𝜑𝑊 ∈ (SubGrp‘𝐻))
2 pgpfac.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pgpfac.h . . . . . . . . 9 𝐻 = (𝐺s 𝑈)
43subsubg 18384 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
61, 5mpbid 235 . . . . . 6 (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈))
76simprd 499 . . . . 5 (𝜑𝑊𝑈)
8 pgpfac.f . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
9 pgpfac.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
109subgss 18362 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
112, 10syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
128, 11ssfid 8792 . . . . . . . . . 10 (𝜑𝑈 ∈ Fin)
1312, 7ssfid 8792 . . . . . . . . 9 (𝜑𝑊 ∈ Fin)
14 hashcl 13781 . . . . . . . . 9 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 12009 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℝ)
17 pgpfac.0 . . . . . . . . . . . 12 0 = (0g𝐻)
1817fvexi 6678 . . . . . . . . . . 11 0 ∈ V
19 hashsng 13794 . . . . . . . . . . 11 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2018, 19ax-mp 5 . . . . . . . . . 10 (♯‘{ 0 }) = 1
21 subgrcl 18366 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
22 eqid 2759 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
2322subgacs 18395 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
24 acsmre 16996 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
251, 21, 23, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
26 pgpfac.k . . . . . . . . . . . . . . 15 𝐾 = (mrCls‘(SubGrp‘𝐻))
2725, 26mrcssvd 16967 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻))
283subgbas 18365 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
292, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 = (Base‘𝐻))
3027, 29sseqtrrd 3936 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
3112, 30ssfid 8792 . . . . . . . . . . . 12 (𝜑 → (𝐾‘{𝑋}) ∈ Fin)
32 pgpfac.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋𝑈)
3332, 29eleqtrd 2855 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (Base‘𝐻))
3426mrcsncl 16956 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3525, 33, 34syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3617subg0cl 18369 . . . . . . . . . . . . . . 15 ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋}))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑0 ∈ (𝐾‘{𝑋}))
3837snssd 4703 . . . . . . . . . . . . 13 (𝜑 → { 0 } ⊆ (𝐾‘{𝑋}))
3933snssd 4703 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ (Base‘𝐻))
4025, 26, 39mrcssidd 16969 . . . . . . . . . . . . . 14 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
41 snssg 4679 . . . . . . . . . . . . . . 15 (𝑋𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4232, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4340, 42mpbird 260 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐾‘{𝑋}))
44 pgpfac.oe . . . . . . . . . . . . . . 15 (𝜑 → (𝑂𝑋) = 𝐸)
45 pgpfac.1 . . . . . . . . . . . . . . 15 (𝜑𝐸 ≠ 1)
4644, 45eqnetrd 3019 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝑋) ≠ 1)
47 pgpfac.o . . . . . . . . . . . . . . . . . 18 𝑂 = (od‘𝐻)
4847, 17od1 18768 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → (𝑂0 ) = 1)
491, 21, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂0 ) = 1)
50 elsni 4543 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ { 0 } → 𝑋 = 0 )
5150fveqeq2d 6672 . . . . . . . . . . . . . . . 16 (𝑋 ∈ { 0 } → ((𝑂𝑋) = 1 ↔ (𝑂0 ) = 1))
5249, 51syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ { 0 } → (𝑂𝑋) = 1))
5352necon3ad 2965 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 }))
5446, 53mpd 15 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ { 0 })
5538, 43, 54ssnelpssd 4021 . . . . . . . . . . . 12 (𝜑 → { 0 } ⊊ (𝐾‘{𝑋}))
56 php3 8739 . . . . . . . . . . . 12 (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋}))
5731, 55, 56syl2anc 587 . . . . . . . . . . 11 (𝜑 → { 0 } ≺ (𝐾‘{𝑋}))
58 snfi 8628 . . . . . . . . . . . 12 { 0 } ∈ Fin
59 hashsdom 13806 . . . . . . . . . . . 12 (({ 0 } ∈ Fin ∧ (𝐾‘{𝑋}) ∈ Fin) → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6058, 31, 59sylancr 590 . . . . . . . . . . 11 (𝜑 → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6157, 60mpbird 260 . . . . . . . . . 10 (𝜑 → (♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})))
6220, 61eqbrtrrid 5073 . . . . . . . . 9 (𝜑 → 1 < (♯‘(𝐾‘{𝑋})))
63 1red 10694 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
64 hashcl 13781 . . . . . . . . . . . 12 ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6531, 64syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6665nn0red 12009 . . . . . . . . . 10 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ)
6717subg0cl 18369 . . . . . . . . . . . . 13 (𝑊 ∈ (SubGrp‘𝐻) → 0𝑊)
68 ne0i 4236 . . . . . . . . . . . . 13 ( 0𝑊𝑊 ≠ ∅)
691, 67, 683syl 18 . . . . . . . . . . . 12 (𝜑𝑊 ≠ ∅)
70 hashnncl 13791 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7113, 70syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7269, 71mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
7372nngt0d 11737 . . . . . . . . . 10 (𝜑 → 0 < (♯‘𝑊))
74 ltmul1 11542 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((♯‘𝑊) ∈ ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7563, 66, 16, 73, 74syl112anc 1372 . . . . . . . . 9 (𝜑 → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7662, 75mpbid 235 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
7716recnd 10721 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
7877mulid2d 10711 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) = (♯‘𝑊))
79 pgpfac.l . . . . . . . . . 10 = (LSSum‘𝐻)
80 eqid 2759 . . . . . . . . . 10 (Cntz‘𝐻) = (Cntz‘𝐻)
81 pgpfac.i . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
82 pgpfac.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ Abel)
833subgabl 19039 . . . . . . . . . . . 12 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
8482, 2, 83syl2anc 587 . . . . . . . . . . 11 (𝜑𝐻 ∈ Abel)
8580, 84, 35, 1ablcntzd 19060 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊))
8679, 17, 80, 35, 1, 81, 85, 31, 13lsmhash 18913 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
87 pgpfac.s . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
8887fveq2d 6668 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = (♯‘𝑈))
8986, 88eqtr3d 2796 . . . . . . . 8 (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈))
9076, 78, 893brtr3d 5068 . . . . . . 7 (𝜑 → (♯‘𝑊) < (♯‘𝑈))
9116, 90ltned 10828 . . . . . 6 (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈))
92 fveq2 6664 . . . . . . 7 (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈))
9392necon3i 2984 . . . . . 6 ((♯‘𝑊) ≠ (♯‘𝑈) → 𝑊𝑈)
9491, 93syl 17 . . . . 5 (𝜑𝑊𝑈)
95 df-pss 3880 . . . . 5 (𝑊𝑈 ↔ (𝑊𝑈𝑊𝑈))
967, 94, 95sylanbrc 586 . . . 4 (𝜑𝑊𝑈)
97 psseq1 3996 . . . . . 6 (𝑡 = 𝑊 → (𝑡𝑈𝑊𝑈))
98 eqeq2 2771 . . . . . . . 8 (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊))
9998anbi2d 631 . . . . . . 7 (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10099rexbidv 3222 . . . . . 6 (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10197, 100imbi12d 348 . . . . 5 (𝑡 = 𝑊 → ((𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))))
102 pgpfac.a . . . . 5 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
1036simpld 498 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
104101, 102, 103rspcdva 3546 . . . 4 (𝜑 → (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10596, 104mpd 15 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))
106 breq2 5041 . . . . 5 (𝑠 = 𝑎 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑎))
107 oveq2 7165 . . . . . 6 (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎))
108107eqeq1d 2761 . . . . 5 (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊))
109106, 108anbi12d 633 . . . 4 (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)))
110109cbvrexvw 3363 . . 3 (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
111105, 110sylib 221 . 2 (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
112 pgpfac.c . . 3 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
11382adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel)
114 pgpfac.p . . . 4 (𝜑𝑃 pGrp 𝐺)
115114adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺)
1168adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin)
1172adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
118102adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
119 pgpfac.e . . 3 𝐸 = (gEx‘𝐻)
12045adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1)
12132adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋𝑈)
12244adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂𝑋) = 𝐸)
1231adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻))
12481adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12587adantr 484 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
126 simprl 770 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶)
127 simprrl 780 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎)
128 simprrr 781 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊)
129 eqid 2759 . . 3 (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩)
1309, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129pgpfaclem1 19286 . 2 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
131111, 130rexlimddv 3216 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wne 2952  wral 3071  wrex 3072  {crab 3075  Vcvv 3410  cin 3860  wss 3861  wpss 3862  c0 4228  {csn 4526   class class class wbr 5037  dom cdm 5529  ran crn 5530  cfv 6341  (class class class)co 7157  csdm 8540  Fincfn 8541  cr 10588  0cc0 10589  1c1 10590   · cmul 10594   < clt 10727  cn 11688  0cn0 11948  chash 13754  Word cword 13927   ++ cconcat 13983  ⟨“cs1 14010  Basecbs 16556  s cress 16557  0gc0g 16786  Moorecmre 16926  mrClscmrc 16927  ACScacs 16929  Grpcgrp 18184  SubGrpcsubg 18355  Cntzccntz 18527  odcod 18734  gExcgex 18735   pGrp cpgp 18736  LSSumclsm 18841  Abelcabl 18989  CycGrpccyg 19079   DProd cdprd 19198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-supp 7843  df-tpos 7909  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-oadd 8123  df-er 8306  df-map 8425  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-fsupp 8881  df-sup 8953  df-inf 8954  df-oi 9021  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-n0 11949  df-xnn0 12021  df-z 12035  df-uz 12297  df-fz 12954  df-fzo 13097  df-seq 13433  df-hash 13755  df-word 13928  df-concat 13984  df-s1 14011  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-0g 16788  df-gsum 16789  df-mre 16930  df-mrc 16931  df-acs 16933  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-mhm 18037  df-submnd 18038  df-grp 18187  df-minusg 18188  df-sbg 18189  df-mulg 18307  df-subg 18358  df-ghm 18438  df-gim 18481  df-cntz 18529  df-oppg 18556  df-od 18738  df-pgp 18740  df-lsm 18843  df-pj1 18844  df-cmn 18990  df-abl 18991  df-cyg 19080  df-dprd 19200
This theorem is referenced by:  pgpfaclem3  19288
  Copyright terms: Public domain W3C validator