MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Visualization version   GIF version

Theorem pgpfaclem2 20126
Description: Lemma for pgpfac 20128. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
pgpfac.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac.a (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
pgpfac.h 𝐻 = (𝐺s 𝑈)
pgpfac.k 𝐾 = (mrCls‘(SubGrp‘𝐻))
pgpfac.o 𝑂 = (od‘𝐻)
pgpfac.e 𝐸 = (gEx‘𝐻)
pgpfac.0 0 = (0g𝐻)
pgpfac.l = (LSSum‘𝐻)
pgpfac.1 (𝜑𝐸 ≠ 1)
pgpfac.x (𝜑𝑋𝑈)
pgpfac.oe (𝜑 → (𝑂𝑋) = 𝐸)
pgpfac.w (𝜑𝑊 ∈ (SubGrp‘𝐻))
pgpfac.i (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
pgpfac.s (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
Assertion
Ref Expression
pgpfaclem2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Distinct variable groups:   𝑡,𝑠,𝐶   𝑠,𝑟,𝑡,𝐺   𝐾,𝑟,𝑠   𝜑,𝑡   𝐵,𝑠,𝑡   𝑈,𝑟,𝑠,𝑡   𝑊,𝑠,𝑡   𝑋,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑡,𝑠,𝑟)   (𝑡,𝑠,𝑟)   𝐸(𝑡,𝑠,𝑟)   𝐻(𝑡,𝑠,𝑟)   𝐾(𝑡)   𝑂(𝑡,𝑠,𝑟)   𝑊(𝑟)   𝑋(𝑡)   0 (𝑡,𝑠,𝑟)

Proof of Theorem pgpfaclem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . . 7 (𝜑𝑊 ∈ (SubGrp‘𝐻))
2 pgpfac.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pgpfac.h . . . . . . . . 9 𝐻 = (𝐺s 𝑈)
43subsubg 19189 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈)))
61, 5mpbid 232 . . . . . 6 (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊𝑈))
76simprd 495 . . . . 5 (𝜑𝑊𝑈)
8 pgpfac.f . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
9 pgpfac.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
109subgss 19167 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
112, 10syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
128, 11ssfid 9329 . . . . . . . . . 10 (𝜑𝑈 ∈ Fin)
1312, 7ssfid 9329 . . . . . . . . 9 (𝜑𝑊 ∈ Fin)
14 hashcl 14405 . . . . . . . . 9 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 12614 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℝ)
17 pgpfac.0 . . . . . . . . . . . 12 0 = (0g𝐻)
1817fvexi 6934 . . . . . . . . . . 11 0 ∈ V
19 hashsng 14418 . . . . . . . . . . 11 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2018, 19ax-mp 5 . . . . . . . . . 10 (♯‘{ 0 }) = 1
21 subgrcl 19171 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
22 eqid 2740 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
2322subgacs 19201 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
24 acsmre 17710 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
251, 21, 23, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
26 pgpfac.k . . . . . . . . . . . . . . 15 𝐾 = (mrCls‘(SubGrp‘𝐻))
2725, 26mrcssvd 17681 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻))
283subgbas 19170 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻))
292, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 = (Base‘𝐻))
3027, 29sseqtrrd 4050 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈)
3112, 30ssfid 9329 . . . . . . . . . . . 12 (𝜑 → (𝐾‘{𝑋}) ∈ Fin)
32 pgpfac.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋𝑈)
3332, 29eleqtrd 2846 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (Base‘𝐻))
3426mrcsncl 17670 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3525, 33, 34syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻))
3617subg0cl 19174 . . . . . . . . . . . . . . 15 ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋}))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑0 ∈ (𝐾‘{𝑋}))
3837snssd 4834 . . . . . . . . . . . . 13 (𝜑 → { 0 } ⊆ (𝐾‘{𝑋}))
3933snssd 4834 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ (Base‘𝐻))
4025, 26, 39mrcssidd 17683 . . . . . . . . . . . . . 14 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
41 snssg 4808 . . . . . . . . . . . . . . 15 (𝑋𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4232, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋})))
4340, 42mpbird 257 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐾‘{𝑋}))
44 pgpfac.oe . . . . . . . . . . . . . . 15 (𝜑 → (𝑂𝑋) = 𝐸)
45 pgpfac.1 . . . . . . . . . . . . . . 15 (𝜑𝐸 ≠ 1)
4644, 45eqnetrd 3014 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝑋) ≠ 1)
47 pgpfac.o . . . . . . . . . . . . . . . . . 18 𝑂 = (od‘𝐻)
4847, 17od1 19601 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → (𝑂0 ) = 1)
491, 21, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂0 ) = 1)
50 elsni 4665 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ { 0 } → 𝑋 = 0 )
5150fveqeq2d 6928 . . . . . . . . . . . . . . . 16 (𝑋 ∈ { 0 } → ((𝑂𝑋) = 1 ↔ (𝑂0 ) = 1))
5249, 51syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ { 0 } → (𝑂𝑋) = 1))
5352necon3ad 2959 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 }))
5446, 53mpd 15 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ { 0 })
5538, 43, 54ssnelpssd 4138 . . . . . . . . . . . 12 (𝜑 → { 0 } ⊊ (𝐾‘{𝑋}))
56 php3 9275 . . . . . . . . . . . 12 (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋}))
5731, 55, 56syl2anc 583 . . . . . . . . . . 11 (𝜑 → { 0 } ≺ (𝐾‘{𝑋}))
58 snfi 9109 . . . . . . . . . . . 12 { 0 } ∈ Fin
59 hashsdom 14430 . . . . . . . . . . . 12 (({ 0 } ∈ Fin ∧ (𝐾‘{𝑋}) ∈ Fin) → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6058, 31, 59sylancr 586 . . . . . . . . . . 11 (𝜑 → ((♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋})))
6157, 60mpbird 257 . . . . . . . . . 10 (𝜑 → (♯‘{ 0 }) < (♯‘(𝐾‘{𝑋})))
6220, 61eqbrtrrid 5202 . . . . . . . . 9 (𝜑 → 1 < (♯‘(𝐾‘{𝑋})))
63 1red 11291 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
64 hashcl 14405 . . . . . . . . . . . 12 ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6531, 64syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℕ0)
6665nn0red 12614 . . . . . . . . . 10 (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ)
6717subg0cl 19174 . . . . . . . . . . . . 13 (𝑊 ∈ (SubGrp‘𝐻) → 0𝑊)
68 ne0i 4364 . . . . . . . . . . . . 13 ( 0𝑊𝑊 ≠ ∅)
691, 67, 683syl 18 . . . . . . . . . . . 12 (𝜑𝑊 ≠ ∅)
70 hashnncl 14415 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7113, 70syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
7269, 71mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
7372nngt0d 12342 . . . . . . . . . 10 (𝜑 → 0 < (♯‘𝑊))
74 ltmul1 12144 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((♯‘𝑊) ∈ ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7563, 66, 16, 73, 74syl112anc 1374 . . . . . . . . 9 (𝜑 → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))))
7662, 75mpbid 232 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
7716recnd 11318 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
7877mullidd 11308 . . . . . . . 8 (𝜑 → (1 · (♯‘𝑊)) = (♯‘𝑊))
79 pgpfac.l . . . . . . . . . 10 = (LSSum‘𝐻)
80 eqid 2740 . . . . . . . . . 10 (Cntz‘𝐻) = (Cntz‘𝐻)
81 pgpfac.i . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
82 pgpfac.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ Abel)
833subgabl 19878 . . . . . . . . . . . 12 ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
8482, 2, 83syl2anc 583 . . . . . . . . . . 11 (𝜑𝐻 ∈ Abel)
8580, 84, 35, 1ablcntzd 19899 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊))
8679, 17, 80, 35, 1, 81, 85, 31, 13lsmhash 19747 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))
87 pgpfac.s . . . . . . . . . 10 (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
8887fveq2d 6924 . . . . . . . . 9 (𝜑 → (♯‘((𝐾‘{𝑋}) 𝑊)) = (♯‘𝑈))
8986, 88eqtr3d 2782 . . . . . . . 8 (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈))
9076, 78, 893brtr3d 5197 . . . . . . 7 (𝜑 → (♯‘𝑊) < (♯‘𝑈))
9116, 90ltned 11426 . . . . . 6 (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈))
92 fveq2 6920 . . . . . . 7 (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈))
9392necon3i 2979 . . . . . 6 ((♯‘𝑊) ≠ (♯‘𝑈) → 𝑊𝑈)
9491, 93syl 17 . . . . 5 (𝜑𝑊𝑈)
95 df-pss 3996 . . . . 5 (𝑊𝑈 ↔ (𝑊𝑈𝑊𝑈))
967, 94, 95sylanbrc 582 . . . 4 (𝜑𝑊𝑈)
97 psseq1 4113 . . . . . 6 (𝑡 = 𝑊 → (𝑡𝑈𝑊𝑈))
98 eqeq2 2752 . . . . . . . 8 (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊))
9998anbi2d 629 . . . . . . 7 (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10099rexbidv 3185 . . . . . 6 (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10197, 100imbi12d 344 . . . . 5 (𝑡 = 𝑊 → ((𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))))
102 pgpfac.a . . . . 5 (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
1036simpld 494 . . . . 5 (𝜑𝑊 ∈ (SubGrp‘𝐺))
104101, 102, 103rspcdva 3636 . . . 4 (𝜑 → (𝑊𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))
10596, 104mpd 15 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))
106 breq2 5170 . . . . 5 (𝑠 = 𝑎 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑎))
107 oveq2 7456 . . . . . 6 (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎))
108107eqeq1d 2742 . . . . 5 (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊))
109106, 108anbi12d 631 . . . 4 (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)))
110109cbvrexvw 3244 . . 3 (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
111105, 110sylib 218 . 2 (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))
112 pgpfac.c . . 3 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
11382adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel)
114 pgpfac.p . . . 4 (𝜑𝑃 pGrp 𝐺)
115114adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺)
1168adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin)
1172adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
118102adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
119 pgpfac.e . . 3 𝐸 = (gEx‘𝐻)
12045adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1)
12132adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋𝑈)
12244adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂𝑋) = 𝐸)
1231adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻))
12481adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })
12587adantr 480 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) 𝑊) = 𝑈)
126 simprl 770 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶)
127 simprrl 780 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎)
128 simprrr 781 . . 3 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊)
129 eqid 2740 . . 3 (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩) = (𝑎 ++ ⟨“(𝐾‘{𝑋})”⟩)
1309, 112, 113, 115, 116, 117, 118, 3, 26, 47, 119, 17, 79, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129pgpfaclem1 20125 . 2 ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
131111, 130rexlimddv 3167 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  wpss 3977  c0 4352  {csn 4648   class class class wbr 5166  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  csdm 9002  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cn 12293  0cn0 12553  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643  Basecbs 17258  s cress 17287  0gc0g 17499  Moorecmre 17640  mrClscmrc 17641  ACScacs 17643  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355  odcod 19566  gExcgex 19567   pGrp cpgp 19568  LSSumclsm 19676  Abelcabl 19823  CycGrpccyg 19919   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-od 19570  df-pgp 19572  df-lsm 19678  df-pj1 19679  df-cmn 19824  df-abl 19825  df-cyg 19920  df-dprd 20039
This theorem is referenced by:  pgpfaclem3  20127
  Copyright terms: Public domain W3C validator