MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Visualization version   GIF version

Theorem canth4 10286
Description: An "effective" form of Cantor's theorem canth 7186. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canth4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2738 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 474 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canth4.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
5 simp1 1138 . . . . . . . 8 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐴𝑉)
6 simpl2 1194 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝐹:𝐷𝐴)
7 simp3 1140 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝒫 𝐴 ∩ dom card) ⊆ 𝐷)
87sselda 3916 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝑥𝐷)
96, 8ffvelrnd 6924 . . . . . . . 8 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
10 canth4.2 . . . . . . . 8 𝐵 = dom 𝑊
114, 5, 9, 10fpwwe 10285 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
123, 11mpbiri 261 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
1312simpld 498 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝑊(𝑊𝐵))
144, 5fpwwelem 10284 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
1513, 14mpbid 235 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
1615simpld 498 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
1716simpld 498 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝐴)
18 canth4.3 . . . . 5 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
19 cnvimass 5964 . . . . 5 ((𝑊𝐵) “ {(𝐹𝐵)}) ⊆ dom (𝑊𝐵)
2018, 19eqsstri 3950 . . . 4 𝐶 ⊆ dom (𝑊𝐵)
2116simprd 499 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
22 dmss 5786 . . . . . 6 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
24 dmxpid 5814 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2523, 24sseqtrdi 3966 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ 𝐵)
2620, 25sstrid 3927 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
2712simprd 499 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) ∈ 𝐵)
2815simprd 499 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))
2928simpld 498 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) We 𝐵)
30 weso 5557 . . . . . 6 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
3129, 30syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) Or 𝐵)
32 sonr 5506 . . . . 5 (((𝑊𝐵) Or 𝐵 ∧ (𝐹𝐵) ∈ 𝐵) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3331, 27, 32syl2anc 587 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3418eleq2i 2830 . . . . 5 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}))
35 fvex 6749 . . . . . 6 (𝐹𝐵) ∈ V
3635eliniseg 5977 . . . . . 6 ((𝐹𝐵) ∈ V → ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵)))
3735, 36ax-mp 5 . . . . 5 ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3834, 37bitri 278 . . . 4 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3933, 38sylnibr 332 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵) ∈ 𝐶)
4026, 27, 39ssnelpssd 4042 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
41 sneq 4566 . . . . . . . 8 (𝑦 = (𝐹𝐵) → {𝑦} = {(𝐹𝐵)})
4241imaeq2d 5944 . . . . . . 7 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = ((𝑊𝐵) “ {(𝐹𝐵)}))
4342, 18eqtr4di 2797 . . . . . 6 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = 𝐶)
4443fveq2d 6740 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹‘((𝑊𝐵) “ {𝑦})) = (𝐹𝐶))
45 id 22 . . . . 5 (𝑦 = (𝐹𝐵) → 𝑦 = (𝐹𝐵))
4644, 45eqeq12d 2754 . . . 4 (𝑦 = (𝐹𝐵) → ((𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦 ↔ (𝐹𝐶) = (𝐹𝐵)))
4728simprd 499 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)
4846, 47, 27rspcdva 3552 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐶) = (𝐹𝐵))
4948eqcomd 2744 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) = (𝐹𝐶))
5017, 40, 493jca 1130 1 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2111  wral 3062  Vcvv 3421  cin 3880  wss 3881  wpss 3882  𝒫 cpw 4528  {csn 4556   cuni 4834   class class class wbr 5068  {copab 5130   Or wor 5482   We wwe 5523   × cxp 5564  ccnv 5565  dom cdm 5566  cima 5569  wf 6394  cfv 6398  cardccrd 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-1st 7780  df-wrecs 8068  df-recs 8129  df-en 8648  df-oi 9151  df-card 9580
This theorem is referenced by:  canthnumlem  10287  canthp1lem2  10292
  Copyright terms: Public domain W3C validator