MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Visualization version   GIF version

Theorem canth4 10685
Description: An "effective" form of Cantor's theorem canth 7385. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canth4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2735 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 470 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canth4.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
5 simp1 1135 . . . . . . . 8 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐴𝑉)
6 simpl2 1191 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝐹:𝐷𝐴)
7 simp3 1137 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝒫 𝐴 ∩ dom card) ⊆ 𝐷)
87sselda 3995 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝑥𝐷)
96, 8ffvelcdmd 7105 . . . . . . . 8 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
10 canth4.2 . . . . . . . 8 𝐵 = dom 𝑊
114, 5, 9, 10fpwwe 10684 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
123, 11mpbiri 258 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
1312simpld 494 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝑊(𝑊𝐵))
144, 5fpwwelem 10683 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
1513, 14mpbid 232 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
1615simpld 494 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
1716simpld 494 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝐴)
18 canth4.3 . . . . 5 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
19 cnvimass 6102 . . . . 5 ((𝑊𝐵) “ {(𝐹𝐵)}) ⊆ dom (𝑊𝐵)
2018, 19eqsstri 4030 . . . 4 𝐶 ⊆ dom (𝑊𝐵)
2116simprd 495 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
22 dmss 5916 . . . . . 6 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
24 dmxpid 5944 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2523, 24sseqtrdi 4046 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ 𝐵)
2620, 25sstrid 4007 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
2712simprd 495 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) ∈ 𝐵)
2815simprd 495 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))
2928simpld 494 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) We 𝐵)
30 weso 5680 . . . . . 6 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
3129, 30syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) Or 𝐵)
32 sonr 5621 . . . . 5 (((𝑊𝐵) Or 𝐵 ∧ (𝐹𝐵) ∈ 𝐵) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3331, 27, 32syl2anc 584 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3418eleq2i 2831 . . . . 5 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}))
35 fvex 6920 . . . . . 6 (𝐹𝐵) ∈ V
3635eliniseg 6115 . . . . . 6 ((𝐹𝐵) ∈ V → ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵)))
3735, 36ax-mp 5 . . . . 5 ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3834, 37bitri 275 . . . 4 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3933, 38sylnibr 329 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵) ∈ 𝐶)
4026, 27, 39ssnelpssd 4125 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
41 sneq 4641 . . . . . . . 8 (𝑦 = (𝐹𝐵) → {𝑦} = {(𝐹𝐵)})
4241imaeq2d 6080 . . . . . . 7 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = ((𝑊𝐵) “ {(𝐹𝐵)}))
4342, 18eqtr4di 2793 . . . . . 6 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = 𝐶)
4443fveq2d 6911 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹‘((𝑊𝐵) “ {𝑦})) = (𝐹𝐶))
45 id 22 . . . . 5 (𝑦 = (𝐹𝐵) → 𝑦 = (𝐹𝐵))
4644, 45eqeq12d 2751 . . . 4 (𝑦 = (𝐹𝐵) → ((𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦 ↔ (𝐹𝐶) = (𝐹𝐵)))
4728simprd 495 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)
4846, 47, 27rspcdva 3623 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐶) = (𝐹𝐵))
4948eqcomd 2741 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) = (𝐹𝐶))
5017, 40, 493jca 1127 1 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cin 3962  wss 3963  wpss 3964  𝒫 cpw 4605  {csn 4631   cuni 4912   class class class wbr 5148  {copab 5210   Or wor 5596   We wwe 5640   × cxp 5687  ccnv 5688  dom cdm 5689  cima 5692  wf 6559  cfv 6563  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-en 8985  df-oi 9548  df-card 9977
This theorem is referenced by:  canthnumlem  10686  canthp1lem2  10691
  Copyright terms: Public domain W3C validator