Proof of Theorem canth4
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢ 𝐵 = 𝐵 |
2 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑊‘𝐵) = (𝑊‘𝐵) |
3 | 1, 2 | pm3.2i 470 |
. . . . . . 7
⊢ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)) |
4 | | canth4.1 |
. . . . . . . 8
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} |
5 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐴 ∈ 𝑉) |
6 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝐹:𝐷⟶𝐴) |
7 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) |
8 | 7 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝑥 ∈ 𝐷) |
9 | 6, 8 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹‘𝑥) ∈ 𝐴) |
10 | | canth4.2 |
. . . . . . . 8
⊢ 𝐵 = ∪
dom 𝑊 |
11 | 4, 5, 9, 10 | fpwwe 10333 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝑊(𝑊‘𝐵) ∧ (𝐹‘𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)))) |
12 | 3, 11 | mpbiri 257 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊‘𝐵) ∧ (𝐹‘𝐵) ∈ 𝐵)) |
13 | 12 | simpld 494 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝑊(𝑊‘𝐵)) |
14 | 4, 5 | fpwwelem 10332 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊‘𝐵) ↔ ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦)))) |
15 | 13, 14 | mpbid 231 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦))) |
16 | 15 | simpld 494 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵))) |
17 | 16 | simpld 494 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵 ⊆ 𝐴) |
18 | | canth4.3 |
. . . . 5
⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) |
19 | | cnvimass 5978 |
. . . . 5
⊢ (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ⊆ dom (𝑊‘𝐵) |
20 | 18, 19 | eqsstri 3951 |
. . . 4
⊢ 𝐶 ⊆ dom (𝑊‘𝐵) |
21 | 16 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) |
22 | | dmss 5800 |
. . . . . 6
⊢ ((𝑊‘𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊‘𝐵) ⊆ dom (𝐵 × 𝐵)) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊‘𝐵) ⊆ dom (𝐵 × 𝐵)) |
24 | | dmxpid 5828 |
. . . . 5
⊢ dom
(𝐵 × 𝐵) = 𝐵 |
25 | 23, 24 | sseqtrdi 3967 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊‘𝐵) ⊆ 𝐵) |
26 | 20, 25 | sstrid 3928 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶 ⊆ 𝐵) |
27 | 12 | simprd 495 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹‘𝐵) ∈ 𝐵) |
28 | 15 | simprd 495 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦)) |
29 | 28 | simpld 494 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊‘𝐵) We 𝐵) |
30 | | weso 5571 |
. . . . . 6
⊢ ((𝑊‘𝐵) We 𝐵 → (𝑊‘𝐵) Or 𝐵) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊‘𝐵) Or 𝐵) |
32 | | sonr 5517 |
. . . . 5
⊢ (((𝑊‘𝐵) Or 𝐵 ∧ (𝐹‘𝐵) ∈ 𝐵) → ¬ (𝐹‘𝐵)(𝑊‘𝐵)(𝐹‘𝐵)) |
33 | 31, 27, 32 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹‘𝐵)(𝑊‘𝐵)(𝐹‘𝐵)) |
34 | 18 | eleq2i 2830 |
. . . . 5
⊢ ((𝐹‘𝐵) ∈ 𝐶 ↔ (𝐹‘𝐵) ∈ (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)})) |
35 | | fvex 6769 |
. . . . . 6
⊢ (𝐹‘𝐵) ∈ V |
36 | 35 | eliniseg 5991 |
. . . . . 6
⊢ ((𝐹‘𝐵) ∈ V → ((𝐹‘𝐵) ∈ (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ↔ (𝐹‘𝐵)(𝑊‘𝐵)(𝐹‘𝐵))) |
37 | 35, 36 | ax-mp 5 |
. . . . 5
⊢ ((𝐹‘𝐵) ∈ (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ↔ (𝐹‘𝐵)(𝑊‘𝐵)(𝐹‘𝐵)) |
38 | 34, 37 | bitri 274 |
. . . 4
⊢ ((𝐹‘𝐵) ∈ 𝐶 ↔ (𝐹‘𝐵)(𝑊‘𝐵)(𝐹‘𝐵)) |
39 | 33, 38 | sylnibr 328 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹‘𝐵) ∈ 𝐶) |
40 | 26, 27, 39 | ssnelpssd 4043 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶 ⊊ 𝐵) |
41 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝐵) → {𝑦} = {(𝐹‘𝐵)}) |
42 | 41 | imaeq2d 5958 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝐵) → (◡(𝑊‘𝐵) “ {𝑦}) = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)})) |
43 | 42, 18 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑦 = (𝐹‘𝐵) → (◡(𝑊‘𝐵) “ {𝑦}) = 𝐶) |
44 | 43 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = (𝐹‘𝐵) → (𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = (𝐹‘𝐶)) |
45 | | id 22 |
. . . . 5
⊢ (𝑦 = (𝐹‘𝐵) → 𝑦 = (𝐹‘𝐵)) |
46 | 44, 45 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = (𝐹‘𝐵) → ((𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦 ↔ (𝐹‘𝐶) = (𝐹‘𝐵))) |
47 | 28 | simprd 495 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ∀𝑦 ∈ 𝐵 (𝐹‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦) |
48 | 46, 47, 27 | rspcdva 3554 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹‘𝐶) = (𝐹‘𝐵)) |
49 | 48 | eqcomd 2744 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹‘𝐵) = (𝐹‘𝐶)) |
50 | 17, 40, 49 | 3jca 1126 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ (𝐹‘𝐵) = (𝐹‘𝐶))) |