![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrexr | Structured version Visualization version GIF version |
Description: A subset of the reals is a subset of the extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrexr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
ssrexr | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexr.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | ressxr 11257 | . 2 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstrdi 3987 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3941 ℝcr 11106 ℝ*cxr 11246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-in 3948 df-ss 3958 df-xr 11251 |
This theorem is referenced by: limsuppnfdlem 44963 liminfval2 45030 |
Copyright terms: Public domain | W3C validator |