Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrexr | Structured version Visualization version GIF version |
Description: A subset of the reals is a subset of the extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrexr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
ssrexr | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexr.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | ressxr 11019 | . 2 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstrdi 3933 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 ℝcr 10870 ℝ*cxr 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-xr 11013 |
This theorem is referenced by: limsuppnfdlem 43242 liminfval2 43309 |
Copyright terms: Public domain | W3C validator |