Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval2 Structured version   Visualization version   GIF version

Theorem liminfval2 45753
Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval2.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
liminfval2.2 (𝜑𝐹𝑉)
liminfval2.3 (𝜑𝐴 ⊆ ℝ)
liminfval2.4 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
liminfval2 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval2
Dummy variables 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfval2.2 . . 3 (𝜑𝐹𝑉)
2 liminfval2.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 oveq1 7360 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘[,)+∞) = (𝑗[,)+∞))
43imaeq2d 6015 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑗[,)+∞)))
54ineq1d 4172 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
65infeq1d 9387 . . . . . 6 (𝑘 = 𝑗 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
76cbvmptv 5199 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
82, 7eqtri 2752 . . . 4 𝐺 = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
98liminfval 45744 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
101, 9syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
11 liminfval2.4 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
12 liminfval2.3 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1312ssrexr 45415 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
14 supxrunb1 13239 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1513, 14syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1611, 15mpbird 257 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
178liminfgf 45743 . . . . . . . . . . 11 𝐺:ℝ⟶ℝ*
1817ffvelcdmi 7021 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
1918ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
20 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝜑)
21 simprl 770 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
2212sselda 3937 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
2317ffvelcdmi 7021 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ*)
2520, 21, 24syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
26 imassrn 6026 . . . . . . . . . . . 12 (𝐺𝐴) ⊆ ran 𝐺
27 frn 6663 . . . . . . . . . . . . 13 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
2817, 27ax-mp 5 . . . . . . . . . . . 12 ran 𝐺 ⊆ ℝ*
2926, 28sstri 3947 . . . . . . . . . . 11 (𝐺𝐴) ⊆ ℝ*
30 supxrcl 13235 . . . . . . . . . . 11 ((𝐺𝐴) ⊆ ℝ* → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
3129, 30ax-mp 5 . . . . . . . . . 10 sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*
3231a1i 11 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
33 simplr 768 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
3420, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
35 simprr 772 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
36 liminfgord 45739 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
3733, 34, 35, 36syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
388liminfgval 45747 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3938ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
408liminfgval 45747 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4122, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4241adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4339, 42breq12d 5108 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4443adantrr 717 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4537, 44mpbird 257 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ (𝐺𝑥))
4629a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝐴) ⊆ ℝ*)
47 nfv 1914 . . . . . . . . . . . . . 14 𝑗𝜑
48 inss2 4191 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
49 infxrcl 13254 . . . . . . . . . . . . . . . 16 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5048, 49ax-mp 5 . . . . . . . . . . . . . . 15 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℝ) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5247, 51, 8fnmptd 6627 . . . . . . . . . . . . 13 (𝜑𝐺 Fn ℝ)
5352adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐺 Fn ℝ)
54 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
5553, 22, 54fnfvimad 7174 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
56 supxrub 13244 . . . . . . . . . . 11 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5746, 55, 56syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5820, 21, 57syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5919, 25, 32, 45, 58xrletrd 13082 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
6059rexlimdvaa 3131 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6160ralimdva 3141 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6216, 61mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
63 xrltso 13061 . . . . . . . . 9 < Or ℝ*
6463infex 9404 . . . . . . . 8 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
6564rgenw 3048 . . . . . . 7 𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
668fnmpt 6626 . . . . . . 7 (∀𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V → 𝐺 Fn ℝ)
6765, 66ax-mp 5 . . . . . 6 𝐺 Fn ℝ
68 breq1 5098 . . . . . . 7 (𝑥 = (𝐺𝑛) → (𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6968ralrn 7026 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
7067, 69ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
7162, 70sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
72 supxrleub 13246 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < )))
7328, 31, 72mp2an 692 . . . 4 (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
7471, 73sylibr 234 . . 3 (𝜑 → sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ))
7526a1i 11 . . . 4 (𝜑 → (𝐺𝐴) ⊆ ran 𝐺)
7628a1i 11 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ*)
77 supxrss 13252 . . . 4 (((𝐺𝐴) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ*) → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
7875, 76, 77syl2anc 584 . . 3 (𝜑 → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
79 supxrcl 13235 . . . . 5 (ran 𝐺 ⊆ ℝ* → sup(ran 𝐺, ℝ*, < ) ∈ ℝ*)
8028, 79ax-mp 5 . . . 4 sup(ran 𝐺, ℝ*, < ) ∈ ℝ*
81 xrletri3 13074 . . . 4 ((sup(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))))
8280, 31, 81mp2an 692 . . 3 (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < )))
8374, 78, 82sylanbrc 583 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ))
8410, 83eqtrd 2764 1 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905   class class class wbr 5095  cmpt 5176  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  [,)cico 13268  lim infclsi 45736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-ico 13272  df-liminf 45737
This theorem is referenced by:  liminfresico  45756
  Copyright terms: Public domain W3C validator