Step | Hyp | Ref
| Expression |
1 | | liminfval2.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
2 | | liminfval2.1 |
. . . . 5
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
3 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑘[,)+∞) = (𝑗[,)+∞)) |
4 | 3 | imaeq2d 5969 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑗[,)+∞))) |
5 | 4 | ineq1d 4145 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) =
((𝐹 “ (𝑗[,)+∞)) ∩
ℝ*)) |
6 | 5 | infeq1d 9236 |
. . . . . 6
⊢ (𝑘 = 𝑗 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < ) = inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
7 | 6 | cbvmptv 5187 |
. . . . 5
⊢ (𝑘 ∈ ℝ ↦
inf(((𝐹 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
8 | 2, 7 | eqtri 2766 |
. . . 4
⊢ 𝐺 = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
9 | 8 | liminfval 43300 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, <
)) |
10 | 1, 9 | syl 17 |
. 2
⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, <
)) |
11 | | liminfval2.4 |
. . . . . . 7
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
12 | | liminfval2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
13 | 12 | ssrexr 42972 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
14 | | supxrunb1 13053 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑛 ∈
ℝ ∃𝑥 ∈
𝐴 𝑛 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |
16 | 11, 15 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥) |
17 | 8 | liminfgf 43299 |
. . . . . . . . . . 11
⊢ 𝐺:ℝ⟶ℝ* |
18 | 17 | ffvelrni 6960 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (𝐺‘𝑛) ∈
ℝ*) |
19 | 18 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑛) ∈
ℝ*) |
20 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝜑) |
21 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ 𝐴) |
22 | 12 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
23 | 17 | ffvelrni 6960 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝐺‘𝑥) ∈
ℝ*) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈
ℝ*) |
25 | 20, 21, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) ∈
ℝ*) |
26 | | imassrn 5980 |
. . . . . . . . . . . 12
⊢ (𝐺 “ 𝐴) ⊆ ran 𝐺 |
27 | | frn 6607 |
. . . . . . . . . . . . 13
⊢ (𝐺:ℝ⟶ℝ* →
ran 𝐺 ⊆
ℝ*) |
28 | 17, 27 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran 𝐺 ⊆
ℝ* |
29 | 26, 28 | sstri 3930 |
. . . . . . . . . . 11
⊢ (𝐺 “ 𝐴) ⊆
ℝ* |
30 | | supxrcl 13049 |
. . . . . . . . . . 11
⊢ ((𝐺 “ 𝐴) ⊆ ℝ* →
sup((𝐺 “ 𝐴), ℝ*, < )
∈ ℝ*) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . 10
⊢
sup((𝐺 “ 𝐴), ℝ*, < )
∈ ℝ* |
32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → sup((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) |
33 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ) |
34 | 20, 21, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
35 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
36 | | liminfgord 43295 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛 ≤ 𝑥) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
37 | 33, 34, 35, 36 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
38 | 8 | liminfgval 43303 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℝ → (𝐺‘𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
39 | 38 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
40 | 8 | liminfgval 43303 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝐺‘𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
41 | 22, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
42 | 41 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
43 | 39, 42 | breq12d 5087 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑛) ≤ (𝐺‘𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
44 | 43 | adantrr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → ((𝐺‘𝑛) ≤ (𝐺‘𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
45 | 37, 44 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑛) ≤ (𝐺‘𝑥)) |
46 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺 “ 𝐴) ⊆
ℝ*) |
47 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝜑 |
48 | | inss2 4163 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
49 | | infxrcl 13067 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)
⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
50 | 48, 49 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈
ℝ* |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℝ) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*),
ℝ*, < ) ∈ ℝ*) |
52 | 47, 51, 8 | fnmptd 6574 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Fn ℝ) |
53 | 52 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn ℝ) |
54 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
55 | 53, 22, 54 | fnfvimad 7110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
56 | | supxrub 13058 |
. . . . . . . . . . 11
⊢ (((𝐺 “ 𝐴) ⊆ ℝ* ∧ (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) → (𝐺‘𝑥) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
57 | 46, 55, 56 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
58 | 20, 21, 57 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
59 | 19, 25, 32, 45, 58 | xrletrd 12896 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
60 | 59 | rexlimdvaa 3214 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → (𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
))) |
61 | 60 | ralimdva 3108 |
. . . . . 6
⊢ (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → ∀𝑛 ∈ ℝ (𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
))) |
62 | 16, 61 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℝ (𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
63 | | xrltso 12875 |
. . . . . . . . 9
⊢ < Or
ℝ* |
64 | 63 | infex 9252 |
. . . . . . . 8
⊢
inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ V |
65 | 64 | rgenw 3076 |
. . . . . . 7
⊢
∀𝑗 ∈
ℝ inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ V |
66 | 8 | fnmpt 6573 |
. . . . . . 7
⊢
(∀𝑗 ∈
ℝ inf(((𝐹 “
(𝑗[,)+∞)) ∩
ℝ*), ℝ*, < ) ∈ V → 𝐺 Fn ℝ) |
67 | 65, 66 | ax-mp 5 |
. . . . . 6
⊢ 𝐺 Fn ℝ |
68 | | breq1 5077 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝑛) → (𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, < ) ↔ (𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
))) |
69 | 68 | ralrn 6964 |
. . . . . 6
⊢ (𝐺 Fn ℝ →
(∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, < ) ↔
∀𝑛 ∈ ℝ
(𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
))) |
70 | 67, 69 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
ran 𝐺 𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, < ) ↔
∀𝑛 ∈ ℝ
(𝐺‘𝑛) ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
71 | 62, 70 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
72 | | supxrleub 13060 |
. . . . 5
⊢ ((ran
𝐺 ⊆
ℝ* ∧ sup((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) → (sup(ran 𝐺, ℝ*, < ) ≤
sup((𝐺 “ 𝐴), ℝ*, < )
↔ ∀𝑥 ∈ ran
𝐺 𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, <
))) |
73 | 28, 31, 72 | mp2an 689 |
. . . 4
⊢ (sup(ran
𝐺, ℝ*,
< ) ≤ sup((𝐺 “
𝐴), ℝ*,
< ) ↔ ∀𝑥
∈ ran 𝐺 𝑥 ≤ sup((𝐺 “ 𝐴), ℝ*, <
)) |
74 | 71, 73 | sylibr 233 |
. . 3
⊢ (𝜑 → sup(ran 𝐺, ℝ*, < ) ≤
sup((𝐺 “ 𝐴), ℝ*, <
)) |
75 | 26 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ ran 𝐺) |
76 | 28 | a1i 11 |
. . . 4
⊢ (𝜑 → ran 𝐺 ⊆
ℝ*) |
77 | | supxrss 13066 |
. . . 4
⊢ (((𝐺 “ 𝐴) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ*) →
sup((𝐺 “ 𝐴), ℝ*, < )
≤ sup(ran 𝐺,
ℝ*, < )) |
78 | 75, 76, 77 | syl2anc 584 |
. . 3
⊢ (𝜑 → sup((𝐺 “ 𝐴), ℝ*, < ) ≤ sup(ran
𝐺, ℝ*,
< )) |
79 | | supxrcl 13049 |
. . . . 5
⊢ (ran
𝐺 ⊆
ℝ* → sup(ran 𝐺, ℝ*, < ) ∈
ℝ*) |
80 | 28, 79 | ax-mp 5 |
. . . 4
⊢ sup(ran
𝐺, ℝ*,
< ) ∈ ℝ* |
81 | | xrletri3 12888 |
. . . 4
⊢ ((sup(ran
𝐺, ℝ*,
< ) ∈ ℝ* ∧ sup((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) → (sup(ran 𝐺, ℝ*, < ) = sup((𝐺 “ 𝐴), ℝ*, < ) ↔
(sup(ran 𝐺,
ℝ*, < ) ≤ sup((𝐺 “ 𝐴), ℝ*, < ) ∧
sup((𝐺 “ 𝐴), ℝ*, < )
≤ sup(ran 𝐺,
ℝ*, < )))) |
82 | 80, 31, 81 | mp2an 689 |
. . 3
⊢ (sup(ran
𝐺, ℝ*,
< ) = sup((𝐺 “
𝐴), ℝ*,
< ) ↔ (sup(ran 𝐺,
ℝ*, < ) ≤ sup((𝐺 “ 𝐴), ℝ*, < ) ∧
sup((𝐺 “ 𝐴), ℝ*, < )
≤ sup(ran 𝐺,
ℝ*, < ))) |
83 | 74, 78, 82 | sylanbrc 583 |
. 2
⊢ (𝜑 → sup(ran 𝐺, ℝ*, < ) = sup((𝐺 “ 𝐴), ℝ*, <
)) |
84 | 10, 83 | eqtrd 2778 |
1
⊢ (𝜑 → (lim inf‘𝐹) = sup((𝐺 “ 𝐴), ℝ*, <
)) |