Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval2 Structured version   Visualization version   GIF version

Theorem liminfval2 45689
Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval2.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
liminfval2.2 (𝜑𝐹𝑉)
liminfval2.3 (𝜑𝐴 ⊆ ℝ)
liminfval2.4 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
liminfval2 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval2
Dummy variables 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfval2.2 . . 3 (𝜑𝐹𝑉)
2 liminfval2.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 oveq1 7455 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘[,)+∞) = (𝑗[,)+∞))
43imaeq2d 6089 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑗[,)+∞)))
54ineq1d 4240 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
65infeq1d 9546 . . . . . 6 (𝑘 = 𝑗 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
76cbvmptv 5279 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
82, 7eqtri 2768 . . . 4 𝐺 = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
98liminfval 45680 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
101, 9syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
11 liminfval2.4 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
12 liminfval2.3 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1312ssrexr 45347 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
14 supxrunb1 13381 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1513, 14syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1611, 15mpbird 257 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
178liminfgf 45679 . . . . . . . . . . 11 𝐺:ℝ⟶ℝ*
1817ffvelcdmi 7117 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
1918ad2antlr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
20 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝜑)
21 simprl 770 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
2212sselda 4008 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
2317ffvelcdmi 7117 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ*)
2520, 21, 24syl2anc 583 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
26 imassrn 6100 . . . . . . . . . . . 12 (𝐺𝐴) ⊆ ran 𝐺
27 frn 6754 . . . . . . . . . . . . 13 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
2817, 27ax-mp 5 . . . . . . . . . . . 12 ran 𝐺 ⊆ ℝ*
2926, 28sstri 4018 . . . . . . . . . . 11 (𝐺𝐴) ⊆ ℝ*
30 supxrcl 13377 . . . . . . . . . . 11 ((𝐺𝐴) ⊆ ℝ* → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
3129, 30ax-mp 5 . . . . . . . . . 10 sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*
3231a1i 11 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
33 simplr 768 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
3420, 21, 22syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
35 simprr 772 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
36 liminfgord 45675 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
3733, 34, 35, 36syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
388liminfgval 45683 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3938ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
408liminfgval 45683 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4122, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4241adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4339, 42breq12d 5179 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4443adantrr 716 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4537, 44mpbird 257 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ (𝐺𝑥))
4629a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝐴) ⊆ ℝ*)
47 nfv 1913 . . . . . . . . . . . . . 14 𝑗𝜑
48 inss2 4259 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
49 infxrcl 13395 . . . . . . . . . . . . . . . 16 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5048, 49ax-mp 5 . . . . . . . . . . . . . . 15 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℝ) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5247, 51, 8fnmptd 6721 . . . . . . . . . . . . 13 (𝜑𝐺 Fn ℝ)
5352adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐺 Fn ℝ)
54 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
5553, 22, 54fnfvimad 7271 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
56 supxrub 13386 . . . . . . . . . . 11 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5746, 55, 56syl2anc 583 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5820, 21, 57syl2anc 583 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5919, 25, 32, 45, 58xrletrd 13224 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
6059rexlimdvaa 3162 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6160ralimdva 3173 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6216, 61mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
63 xrltso 13203 . . . . . . . . 9 < Or ℝ*
6463infex 9562 . . . . . . . 8 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
6564rgenw 3071 . . . . . . 7 𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
668fnmpt 6720 . . . . . . 7 (∀𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V → 𝐺 Fn ℝ)
6765, 66ax-mp 5 . . . . . 6 𝐺 Fn ℝ
68 breq1 5169 . . . . . . 7 (𝑥 = (𝐺𝑛) → (𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6968ralrn 7122 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
7067, 69ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
7162, 70sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
72 supxrleub 13388 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < )))
7328, 31, 72mp2an 691 . . . 4 (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
7471, 73sylibr 234 . . 3 (𝜑 → sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ))
7526a1i 11 . . . 4 (𝜑 → (𝐺𝐴) ⊆ ran 𝐺)
7628a1i 11 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ*)
77 supxrss 13394 . . . 4 (((𝐺𝐴) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ*) → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
7875, 76, 77syl2anc 583 . . 3 (𝜑 → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
79 supxrcl 13377 . . . . 5 (ran 𝐺 ⊆ ℝ* → sup(ran 𝐺, ℝ*, < ) ∈ ℝ*)
8028, 79ax-mp 5 . . . 4 sup(ran 𝐺, ℝ*, < ) ∈ ℝ*
81 xrletri3 13216 . . . 4 ((sup(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))))
8280, 31, 81mp2an 691 . . 3 (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < )))
8374, 78, 82sylanbrc 582 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ))
8410, 83eqtrd 2780 1 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  infcinf 9510  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  lim infclsi 45672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-liminf 45673
This theorem is referenced by:  liminfresico  45692
  Copyright terms: Public domain W3C validator