Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval2 Structured version   Visualization version   GIF version

Theorem liminfval2 43309
Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval2.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
liminfval2.2 (𝜑𝐹𝑉)
liminfval2.3 (𝜑𝐴 ⊆ ℝ)
liminfval2.4 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
liminfval2 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval2
Dummy variables 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfval2.2 . . 3 (𝜑𝐹𝑉)
2 liminfval2.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 oveq1 7282 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘[,)+∞) = (𝑗[,)+∞))
43imaeq2d 5969 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑗[,)+∞)))
54ineq1d 4145 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
65infeq1d 9236 . . . . . 6 (𝑘 = 𝑗 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
76cbvmptv 5187 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
82, 7eqtri 2766 . . . 4 𝐺 = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
98liminfval 43300 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
101, 9syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
11 liminfval2.4 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
12 liminfval2.3 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1312ssrexr 42972 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
14 supxrunb1 13053 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1513, 14syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1611, 15mpbird 256 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
178liminfgf 43299 . . . . . . . . . . 11 𝐺:ℝ⟶ℝ*
1817ffvelrni 6960 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
1918ad2antlr 724 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
20 simpll 764 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝜑)
21 simprl 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
2212sselda 3921 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
2317ffvelrni 6960 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ*)
2520, 21, 24syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
26 imassrn 5980 . . . . . . . . . . . 12 (𝐺𝐴) ⊆ ran 𝐺
27 frn 6607 . . . . . . . . . . . . 13 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
2817, 27ax-mp 5 . . . . . . . . . . . 12 ran 𝐺 ⊆ ℝ*
2926, 28sstri 3930 . . . . . . . . . . 11 (𝐺𝐴) ⊆ ℝ*
30 supxrcl 13049 . . . . . . . . . . 11 ((𝐺𝐴) ⊆ ℝ* → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
3129, 30ax-mp 5 . . . . . . . . . 10 sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*
3231a1i 11 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
33 simplr 766 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
3420, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
35 simprr 770 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
36 liminfgord 43295 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
3733, 34, 35, 36syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
388liminfgval 43303 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3938ad2antlr 724 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
408liminfgval 43303 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4122, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4241adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4339, 42breq12d 5087 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4443adantrr 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4537, 44mpbird 256 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ (𝐺𝑥))
4629a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝐴) ⊆ ℝ*)
47 nfv 1917 . . . . . . . . . . . . . 14 𝑗𝜑
48 inss2 4163 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
49 infxrcl 13067 . . . . . . . . . . . . . . . 16 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5048, 49ax-mp 5 . . . . . . . . . . . . . . 15 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℝ) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5247, 51, 8fnmptd 6574 . . . . . . . . . . . . 13 (𝜑𝐺 Fn ℝ)
5352adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐺 Fn ℝ)
54 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
5553, 22, 54fnfvimad 7110 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
56 supxrub 13058 . . . . . . . . . . 11 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5746, 55, 56syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5820, 21, 57syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5919, 25, 32, 45, 58xrletrd 12896 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
6059rexlimdvaa 3214 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6160ralimdva 3108 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6216, 61mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
63 xrltso 12875 . . . . . . . . 9 < Or ℝ*
6463infex 9252 . . . . . . . 8 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
6564rgenw 3076 . . . . . . 7 𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
668fnmpt 6573 . . . . . . 7 (∀𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V → 𝐺 Fn ℝ)
6765, 66ax-mp 5 . . . . . 6 𝐺 Fn ℝ
68 breq1 5077 . . . . . . 7 (𝑥 = (𝐺𝑛) → (𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6968ralrn 6964 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
7067, 69ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
7162, 70sylibr 233 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
72 supxrleub 13060 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < )))
7328, 31, 72mp2an 689 . . . 4 (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
7471, 73sylibr 233 . . 3 (𝜑 → sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ))
7526a1i 11 . . . 4 (𝜑 → (𝐺𝐴) ⊆ ran 𝐺)
7628a1i 11 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ*)
77 supxrss 13066 . . . 4 (((𝐺𝐴) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ*) → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
7875, 76, 77syl2anc 584 . . 3 (𝜑 → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
79 supxrcl 13049 . . . . 5 (ran 𝐺 ⊆ ℝ* → sup(ran 𝐺, ℝ*, < ) ∈ ℝ*)
8028, 79ax-mp 5 . . . 4 sup(ran 𝐺, ℝ*, < ) ∈ ℝ*
81 xrletri3 12888 . . . 4 ((sup(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))))
8280, 31, 81mp2an 689 . . 3 (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < )))
8374, 78, 82sylanbrc 583 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ))
8410, 83eqtrd 2778 1 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  lim infclsi 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085  df-liminf 43293
This theorem is referenced by:  liminfresico  43312
  Copyright terms: Public domain W3C validator