| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrmnf2 | Structured version Visualization version GIF version | ||
| Description: Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| supxrmnf2 | ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifss 4099 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*) | |
| 2 | supxrmnf 13253 | . . . . 5 ⊢ ((𝐴 ∖ {-∞}) ⊆ ℝ* → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) |
| 5 | difsnid 4770 | . . . . 5 ⊢ (-∞ ∈ 𝐴 → ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴) | |
| 6 | 5 | supeq1d 9373 | . . . 4 ⊢ (-∞ ∈ 𝐴 → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 8 | 4, 7 | eqtr3d 2766 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 9 | difsn 4758 | . . . 4 ⊢ (¬ -∞ ∈ 𝐴 → (𝐴 ∖ {-∞}) = 𝐴) | |
| 10 | 9 | supeq1d 9373 | . . 3 ⊢ (¬ -∞ ∈ 𝐴 → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 12 | 8, 11 | pm2.61dan 812 | 1 ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 {csn 4585 supcsup 9367 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: supminfxr2 45438 |
| Copyright terms: Public domain | W3C validator |