| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrmnf2 | Structured version Visualization version GIF version | ||
| Description: Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| supxrmnf2 | ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifss 4085 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*) | |
| 2 | supxrmnf 13211 | . . . . 5 ⊢ ((𝐴 ∖ {-∞}) ⊆ ℝ* → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < )) |
| 5 | difsnid 4757 | . . . . 5 ⊢ (-∞ ∈ 𝐴 → ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴) | |
| 6 | 5 | supeq1d 9325 | . . . 4 ⊢ (-∞ ∈ 𝐴 → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup(((𝐴 ∖ {-∞}) ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 8 | 4, 7 | eqtr3d 2768 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 9 | difsn 4745 | . . . 4 ⊢ (¬ -∞ ∈ 𝐴 → (𝐴 ∖ {-∞}) = 𝐴) | |
| 10 | 9 | supeq1d 9325 | . . 3 ⊢ (¬ -∞ ∈ 𝐴 → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 12 | 8, 11 | pm2.61dan 812 | 1 ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 {csn 4571 supcsup 9319 -∞cmnf 11139 ℝ*cxr 11140 < clt 11141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 |
| This theorem is referenced by: supminfxr2 45507 |
| Copyright terms: Public domain | W3C validator |