Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfdlem Structured version   Visualization version   GIF version

Theorem limsuppnfdlem 43932
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfdlem.a (𝜑𝐴 ⊆ ℝ)
limsuppnfdlem.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfdlem.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
limsuppnfdlem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuppnfdlem (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsuppnfdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsuppnfdlem.f . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11142 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
4 limsuppnfdlem.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5281 . . . 4 (𝜑𝐴 ∈ V)
61, 5fexd 7177 . . 3 (𝜑𝐹 ∈ V)
7 limsuppnfdlem.g . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
87limsupval 15356 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
96, 8syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
101ffund 6672 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
1110adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → Fun 𝐹)
12 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗𝐴)
131fdmd 6679 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → dom 𝐹 = 𝐴)
1512, 14eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ dom 𝐹)
1611, 15jca 512 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (Fun 𝐹𝑗 ∈ dom 𝐹))
1716ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (Fun 𝐹𝑗 ∈ dom 𝐹))
18 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
1918rexrd 11205 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
20 pnfxr 11209 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
224ssrexr 43657 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ*)
2322sselda 3944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
2423ad4ant13 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
25 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
264sselda 3944 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
2726ltpnfd 13042 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 < +∞)
2827ad4ant13 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
2919, 21, 24, 25, 28elicod 13314 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
30 funfvima 7180 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞))))
3117, 29, 30sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
321ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3332ad4ant13 749 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ℝ*)
3431, 33elind 4154 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3534adantllr 717 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635adantrr 715 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
37 simprr 771 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
38 breq2 5109 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑥𝑦𝑥 ≤ (𝐹𝑗)))
3938rspcev 3581 . . . . . . . . . . 11 (((𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4036, 37, 39syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
41 limsuppnfdlem.u . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4241r19.21bi 3234 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4342r19.21bi 3234 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4443an32s 650 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4540, 44r19.29a 3159 . . . . . . . . 9 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4645ralrimiva 3143 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
47 inss2 4189 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
48 supxrunb3 43624 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
4947, 48mp1i 13 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
5046, 49mpbid 231 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞)
5150mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ +∞))
527, 51eqtrid 2788 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ +∞))
5352rneqd 5893 . . . 4 (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦ +∞))
54 eqid 2736 . . . . 5 (𝑘 ∈ ℝ ↦ +∞) = (𝑘 ∈ ℝ ↦ +∞)
55 ren0 43627 . . . . . 6 ℝ ≠ ∅
5655a1i 11 . . . . 5 (𝜑 → ℝ ≠ ∅)
5754, 56rnmptc 7156 . . . 4 (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) = {+∞})
5853, 57eqtrd 2776 . . 3 (𝜑 → ran 𝐺 = {+∞})
5958infeq1d 9413 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf({+∞}, ℝ*, < ))
60 xrltso 13060 . . . 4 < Or ℝ*
61 infsn 9441 . . . 4 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
6260, 20, 61mp2an 690 . . 3 inf({+∞}, ℝ*, < ) = +∞
6362a1i 11 . 2 (𝜑 → inf({+∞}, ℝ*, < ) = +∞)
649, 59, 633eqtrd 2780 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188   Or wor 5544  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  infcinf 9377  cr 11050  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  [,)cico 13266  lim supclsp 15352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-ico 13270  df-limsup 15353
This theorem is referenced by:  limsuppnfd  43933
  Copyright terms: Public domain W3C validator