Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfdlem Structured version   Visualization version   GIF version

Theorem limsuppnfdlem 43249
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfdlem.a (𝜑𝐴 ⊆ ℝ)
limsuppnfdlem.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfdlem.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
limsuppnfdlem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuppnfdlem (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsuppnfdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsuppnfdlem.f . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 10971 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
4 limsuppnfdlem.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5249 . . . 4 (𝜑𝐴 ∈ V)
61, 5fexd 7112 . . 3 (𝜑𝐹 ∈ V)
7 limsuppnfdlem.g . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
87limsupval 15192 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
96, 8syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
101ffund 6613 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
1110adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → Fun 𝐹)
12 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗𝐴)
131fdmd 6620 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → dom 𝐹 = 𝐴)
1512, 14eleqtrrd 2843 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ dom 𝐹)
1611, 15jca 512 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (Fun 𝐹𝑗 ∈ dom 𝐹))
1716ad4ant13 748 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (Fun 𝐹𝑗 ∈ dom 𝐹))
18 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
1918rexrd 11034 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
20 pnfxr 11038 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
224ssrexr 42979 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ*)
2322sselda 3922 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
2423ad4ant13 748 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
25 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
264sselda 3922 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
2726ltpnfd 12866 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 < +∞)
2827ad4ant13 748 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
2919, 21, 24, 25, 28elicod 13138 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
30 funfvima 7115 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞))))
3117, 29, 30sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
321ffvelrnda 6970 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3332ad4ant13 748 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ℝ*)
3431, 33elind 4129 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3534adantllr 716 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635adantrr 714 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
37 simprr 770 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
38 breq2 5079 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑥𝑦𝑥 ≤ (𝐹𝑗)))
3938rspcev 3562 . . . . . . . . . . 11 (((𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4036, 37, 39syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
41 limsuppnfdlem.u . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4241r19.21bi 3135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4342r19.21bi 3135 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4443an32s 649 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4540, 44r19.29a 3219 . . . . . . . . 9 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4645ralrimiva 3104 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
47 inss2 4164 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
48 supxrunb3 42946 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
4947, 48mp1i 13 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
5046, 49mpbid 231 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞)
5150mpteq2dva 5175 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ +∞))
527, 51eqtrid 2791 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ +∞))
5352rneqd 5850 . . . 4 (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦ +∞))
54 eqid 2739 . . . . 5 (𝑘 ∈ ℝ ↦ +∞) = (𝑘 ∈ ℝ ↦ +∞)
55 ren0 42949 . . . . . 6 ℝ ≠ ∅
5655a1i 11 . . . . 5 (𝜑 → ℝ ≠ ∅)
5754, 56rnmptc 7091 . . . 4 (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) = {+∞})
5853, 57eqtrd 2779 . . 3 (𝜑 → ran 𝐺 = {+∞})
5958infeq1d 9245 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf({+∞}, ℝ*, < ))
60 xrltso 12884 . . . 4 < Or ℝ*
61 infsn 9273 . . . 4 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
6260, 20, 61mp2an 689 . . 3 inf({+∞}, ℝ*, < ) = +∞
6362a1i 11 . 2 (𝜑 → inf({+∞}, ℝ*, < ) = +∞)
649, 59, 633eqtrd 2783 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  Vcvv 3433  cin 3887  wss 3888  c0 4257  {csn 4562   class class class wbr 5075  cmpt 5158   Or wor 5503  dom cdm 5590  ran crn 5591  cima 5593  Fun wfun 6431  wf 6433  cfv 6437  (class class class)co 7284  supcsup 9208  infcinf 9209  cr 10879  +∞cpnf 11015  *cxr 11017   < clt 11018  cle 11019  [,)cico 13090  lim supclsp 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-ico 13094  df-limsup 15189
This theorem is referenced by:  limsuppnfd  43250
  Copyright terms: Public domain W3C validator