Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfdlem Structured version   Visualization version   GIF version

Theorem limsuppnfdlem 45716
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfdlem.a (𝜑𝐴 ⊆ ℝ)
limsuppnfdlem.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfdlem.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
limsuppnfdlem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuppnfdlem (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsuppnfdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsuppnfdlem.f . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11246 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
4 limsuppnfdlem.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5324 . . . 4 (𝜑𝐴 ∈ V)
61, 5fexd 7247 . . 3 (𝜑𝐹 ∈ V)
7 limsuppnfdlem.g . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
87limsupval 15510 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
96, 8syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
101ffund 6740 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
1110adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → Fun 𝐹)
12 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗𝐴)
131fdmd 6746 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → dom 𝐹 = 𝐴)
1512, 14eleqtrrd 2844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ dom 𝐹)
1611, 15jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (Fun 𝐹𝑗 ∈ dom 𝐹))
1716ad4ant13 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (Fun 𝐹𝑗 ∈ dom 𝐹))
18 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
1918rexrd 11311 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
20 pnfxr 11315 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
224ssrexr 45443 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ*)
2322sselda 3983 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
2423ad4ant13 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
264sselda 3983 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
2726ltpnfd 13163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 < +∞)
2827ad4ant13 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
2919, 21, 24, 25, 28elicod 13437 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
30 funfvima 7250 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞))))
3117, 29, 30sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
321ffvelcdmda 7104 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3332ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ℝ*)
3431, 33elind 4200 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3534adantllr 719 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635adantrr 717 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
37 simprr 773 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
38 breq2 5147 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑥𝑦𝑥 ≤ (𝐹𝑗)))
3938rspcev 3622 . . . . . . . . . . 11 (((𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4036, 37, 39syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
41 limsuppnfdlem.u . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4241r19.21bi 3251 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4342r19.21bi 3251 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4443an32s 652 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4540, 44r19.29a 3162 . . . . . . . . 9 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4645ralrimiva 3146 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
47 inss2 4238 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
48 supxrunb3 45410 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
4947, 48mp1i 13 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
5046, 49mpbid 232 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞)
5150mpteq2dva 5242 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ +∞))
527, 51eqtrid 2789 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ +∞))
5352rneqd 5949 . . . 4 (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦ +∞))
54 eqid 2737 . . . . 5 (𝑘 ∈ ℝ ↦ +∞) = (𝑘 ∈ ℝ ↦ +∞)
55 ren0 45413 . . . . . 6 ℝ ≠ ∅
5655a1i 11 . . . . 5 (𝜑 → ℝ ≠ ∅)
5754, 56rnmptc 7227 . . . 4 (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) = {+∞})
5853, 57eqtrd 2777 . . 3 (𝜑 → ran 𝐺 = {+∞})
5958infeq1d 9517 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf({+∞}, ℝ*, < ))
60 xrltso 13183 . . . 4 < Or ℝ*
61 infsn 9545 . . . 4 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
6260, 20, 61mp2an 692 . . 3 inf({+∞}, ℝ*, < ) = +∞
6362a1i 11 . 2 (𝜑 → inf({+∞}, ℝ*, < ) = +∞)
649, 59, 633eqtrd 2781 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225   Or wor 5591  dom cdm 5685  ran crn 5686  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  infcinf 9481  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  lim supclsp 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-ico 13393  df-limsup 15507
This theorem is referenced by:  limsuppnfd  45717
  Copyright terms: Public domain W3C validator