Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfdlem Structured version   Visualization version   GIF version

Theorem limsuppnfdlem 45091
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfdlem.a (𝜑𝐴 ⊆ ℝ)
limsuppnfdlem.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfdlem.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
limsuppnfdlem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuppnfdlem (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsuppnfdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsuppnfdlem.f . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11235 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
4 limsuppnfdlem.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5326 . . . 4 (𝜑𝐴 ∈ V)
61, 5fexd 7243 . . 3 (𝜑𝐹 ∈ V)
7 limsuppnfdlem.g . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
87limsupval 15456 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
96, 8syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
101ffund 6729 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
1110adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → Fun 𝐹)
12 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗𝐴)
131fdmd 6736 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → dom 𝐹 = 𝐴)
1512, 14eleqtrrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ dom 𝐹)
1611, 15jca 510 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (Fun 𝐹𝑗 ∈ dom 𝐹))
1716ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (Fun 𝐹𝑗 ∈ dom 𝐹))
18 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
1918rexrd 11300 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
20 pnfxr 11304 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
224ssrexr 44816 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ*)
2322sselda 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
2423ad4ant13 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
25 simpr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
264sselda 3980 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
2726ltpnfd 13139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 < +∞)
2827ad4ant13 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
2919, 21, 24, 25, 28elicod 13412 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
30 funfvima 7246 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞))))
3117, 29, 30sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
321ffvelcdmda 7097 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3332ad4ant13 749 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ℝ*)
3431, 33elind 4194 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3534adantllr 717 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635adantrr 715 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
37 simprr 771 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
38 breq2 5154 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑥𝑦𝑥 ≤ (𝐹𝑗)))
3938rspcev 3609 . . . . . . . . . . 11 (((𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4036, 37, 39syl2anc 582 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
41 limsuppnfdlem.u . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4241r19.21bi 3244 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4342r19.21bi 3244 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4443an32s 650 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4540, 44r19.29a 3158 . . . . . . . . 9 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4645ralrimiva 3142 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
47 inss2 4230 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
48 supxrunb3 44783 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
4947, 48mp1i 13 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
5046, 49mpbid 231 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞)
5150mpteq2dva 5250 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ +∞))
527, 51eqtrid 2779 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ +∞))
5352rneqd 5942 . . . 4 (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦ +∞))
54 eqid 2727 . . . . 5 (𝑘 ∈ ℝ ↦ +∞) = (𝑘 ∈ ℝ ↦ +∞)
55 ren0 44786 . . . . . 6 ℝ ≠ ∅
5655a1i 11 . . . . 5 (𝜑 → ℝ ≠ ∅)
5754, 56rnmptc 7223 . . . 4 (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) = {+∞})
5853, 57eqtrd 2767 . . 3 (𝜑 → ran 𝐺 = {+∞})
5958infeq1d 9506 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf({+∞}, ℝ*, < ))
60 xrltso 13158 . . . 4 < Or ℝ*
61 infsn 9534 . . . 4 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
6260, 20, 61mp2an 690 . . 3 inf({+∞}, ℝ*, < ) = +∞
6362a1i 11 . 2 (𝜑 → inf({+∞}, ℝ*, < ) = +∞)
649, 59, 633eqtrd 2771 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066  Vcvv 3471  cin 3946  wss 3947  c0 4324  {csn 4630   class class class wbr 5150  cmpt 5233   Or wor 5591  dom cdm 5680  ran crn 5681  cima 5683  Fun wfun 6545  wf 6547  cfv 6551  (class class class)co 7424  supcsup 9469  infcinf 9470  cr 11143  +∞cpnf 11281  *cxr 11283   < clt 11284  cle 11285  [,)cico 13364  lim supclsp 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-ico 13368  df-limsup 15453
This theorem is referenced by:  limsuppnfd  45092
  Copyright terms: Public domain W3C validator