Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfdlem Structured version   Visualization version   GIF version

Theorem limsuppnfdlem 42185
 Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfdlem.a (𝜑𝐴 ⊆ ℝ)
limsuppnfdlem.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfdlem.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
limsuppnfdlem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuppnfdlem (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsuppnfdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsuppnfdlem.f . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 10613 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
4 limsuppnfdlem.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5209 . . . 4 (𝜑𝐴 ∈ V)
61, 5fexd 6971 . . 3 (𝜑𝐹 ∈ V)
7 limsuppnfdlem.g . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
87limsupval 14820 . . 3 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
96, 8syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
101ffund 6499 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
1110adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → Fun 𝐹)
12 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗𝐴)
131fdmd 6504 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → dom 𝐹 = 𝐴)
1512, 14eleqtrrd 2919 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ dom 𝐹)
1611, 15jca 515 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (Fun 𝐹𝑗 ∈ dom 𝐹))
1716ad4ant13 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (Fun 𝐹𝑗 ∈ dom 𝐹))
18 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ)
1918rexrd 10676 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
20 pnfxr 10680 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
224ssrexr 41911 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℝ*)
2322sselda 3951 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
2423ad4ant13 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
25 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
264sselda 3951 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
2726ltpnfd 12502 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → 𝑗 < +∞)
2827ad4ant13 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
2919, 21, 24, 25, 28elicod 12773 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
30 funfvima 6974 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞))))
3117, 29, 30sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
321ffvelrnda 6832 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3332ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ℝ*)
3431, 33elind 4154 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3534adantllr 718 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635adantrr 716 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
37 simprr 772 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
38 breq2 5051 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑥𝑦𝑥 ≤ (𝐹𝑗)))
3938rspcev 3608 . . . . . . . . . . 11 (((𝐹𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4036, 37, 39syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
41 limsuppnfdlem.u . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4241r19.21bi 3202 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4342r19.21bi 3202 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4443an32s 651 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4540, 44r19.29a 3281 . . . . . . . . 9 (((𝜑𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
4645ralrimiva 3176 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦)
47 inss2 4189 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
48 supxrunb3 41878 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
4947, 48mp1i 13 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞))
5046, 49mpbid 235 . . . . . . 7 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = +∞)
5150mpteq2dva 5142 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ +∞))
527, 51syl5eq 2871 . . . . 5 (𝜑𝐺 = (𝑘 ∈ ℝ ↦ +∞))
5352rneqd 5789 . . . 4 (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦ +∞))
54 eqid 2824 . . . . 5 (𝑘 ∈ ℝ ↦ +∞) = (𝑘 ∈ ℝ ↦ +∞)
55 ren0 41881 . . . . . 6 ℝ ≠ ∅
5655a1i 11 . . . . 5 (𝜑 → ℝ ≠ ∅)
5754, 56rnmptc 6950 . . . 4 (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) = {+∞})
5853, 57eqtrd 2859 . . 3 (𝜑 → ran 𝐺 = {+∞})
5958infeq1d 8925 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf({+∞}, ℝ*, < ))
60 xrltso 12520 . . . 4 < Or ℝ*
61 infsn 8953 . . . 4 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
6260, 20, 61mp2an 691 . . 3 inf({+∞}, ℝ*, < ) = +∞
6362a1i 11 . 2 (𝜑 → inf({+∞}, ℝ*, < ) = +∞)
649, 59, 633eqtrd 2863 1 (𝜑 → (lim sup‘𝐹) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  ∃wrex 3133  Vcvv 3479   ∩ cin 3917   ⊆ wss 3918  ∅c0 4274  {csn 4548   class class class wbr 5047   ↦ cmpt 5127   Or wor 5454  dom cdm 5536  ran crn 5537   “ cima 5539  Fun wfun 6330  ⟶wf 6332  ‘cfv 6336  (class class class)co 7138  supcsup 8888  infcinf 8889  ℝcr 10521  +∞cpnf 10657  ℝ*cxr 10659   < clt 10660   ≤ cle 10661  [,)cico 12726  lim supclsp 14816 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-ico 12730  df-limsup 14817 This theorem is referenced by:  limsuppnfd  42186
 Copyright terms: Public domain W3C validator