Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑖)) |
2 | 1 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) |
3 | 2 | cbvrexvw 3384 |
. . . . . 6
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥) |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) |
5 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝑤)) |
6 | 5 | ralbidv 3112 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
7 | 6 | rexbidv 3226 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
8 | 4, 7 | bitrd 278 |
. . . 4
⊢ (𝑥 = 𝑤 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
9 | 8 | cbvrexvw 3384 |
. . 3
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) |
10 | 9 | a1i 11 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
11 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑦)) |
12 | 11 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
13 | 12 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
14 | 13 | cbvrexvw 3384 |
. . . . . 6
⊢
(∃𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
15 | 14 | biimpi 215 |
. . . . 5
⊢
(∃𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑖)𝐵 ≤ 𝑤 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
16 | | uzub.1 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝜑 |
17 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑦 ∈ ℝ |
18 | 16, 17 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ℝ) |
19 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑖 ∈ 𝑍 |
20 | 18, 19 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) |
21 | | nfra1 3144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 |
22 | 20, 21 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
23 | | nfmpt1 5182 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵) |
24 | 23 | nfrn 5861 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵) |
25 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗ℝ |
26 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗
< |
27 | 24, 25, 26 | nfsup 9210 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) |
28 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗
≤ |
29 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑦 |
30 | 27, 28, 29 | nfbr 5121 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗sup(ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦 |
31 | 30, 29, 27 | nfif 4489 |
. . . . . . . . . 10
⊢
Ⅎ𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) |
32 | | uzub.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
33 | 32 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑀 ∈ ℤ) |
34 | | uzub.3 |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) |
35 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑦 ∈ ℝ) |
36 | | eqid 2738 |
. . . . . . . . . 10
⊢ sup(ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) |
37 | | eqid 2738 |
. . . . . . . . . 10
⊢
if(sup(ran (𝑗 ∈
(𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) |
38 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑖 ∈ 𝑍) |
39 | | uzub.12 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
40 | 39 | ad5ant15 756 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
41 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
42 | 22, 31, 33, 34, 35, 36, 37, 38, 40, 41 | uzublem 42970 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) |
43 | 42 | rexlimdva2 3216 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) |
44 | 43 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) |
45 | 44 | rexlimdva2 3216 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) |
46 | 45 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) |
47 | 15, 46 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) |
48 | 47 | ex 413 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) |
49 | 32, 34 | uzidd2 42956 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
50 | 49 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → 𝑀 ∈ 𝑍) |
51 | 34 | raleqi 3346 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) |
52 | 51 | biimpi 215 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 → ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) |
53 | 52 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) |
54 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑖∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤 |
55 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑀)) |
56 | 55 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤)) |
57 | 54, 56 | rspce 3550 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) |
58 | 50, 53, 57 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) |
59 | 58 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
60 | 59 | reximdva 3203 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 → ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) |
61 | 48, 60 | impbid 211 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) |
62 | | breq2 5078 |
. . . . 5
⊢ (𝑤 = 𝑥 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑥)) |
63 | 62 | ralbidv 3112 |
. . . 4
⊢ (𝑤 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
64 | 63 | cbvrexvw 3384 |
. . 3
⊢
(∃𝑤 ∈
ℝ ∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
65 | 64 | a1i 11 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
66 | 10, 61, 65 | 3bitrd 305 |
1
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |