Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzub Structured version   Visualization version   GIF version

Theorem uzub 43752
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzub.1 𝑗𝜑
uzub.2 (𝜑𝑀 ∈ ℤ)
uzub.3 𝑍 = (ℤ𝑀)
uzub.12 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
uzub (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem uzub
Dummy variables 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6843 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
21raleqdv 3312 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑥))
32cbvrexvw 3225 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥)
43a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥))
5 breq2 5110 . . . . . . 7 (𝑥 = 𝑤 → (𝐵𝑥𝐵𝑤))
65ralbidv 3171 . . . . . 6 (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑤))
76rexbidv 3172 . . . . 5 (𝑥 = 𝑤 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
84, 7bitrd 279 . . . 4 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
98cbvrexvw 3225 . . 3 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
109a1i 11 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
11 breq2 5110 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1211ralbidv 3171 . . . . . . . 8 (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1312rexbidv 3172 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1413cbvrexvw 3225 . . . . . 6 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
1514biimpi 215 . . . . 5 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
16 uzub.1 . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1918 . . . . . . . . . . . . 13 𝑗 𝑦 ∈ ℝ
1816, 17nfan 1903 . . . . . . . . . . . 12 𝑗(𝜑𝑦 ∈ ℝ)
19 nfv 1918 . . . . . . . . . . . 12 𝑗 𝑖𝑍
2018, 19nfan 1903 . . . . . . . . . . 11 𝑗((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍)
21 nfra1 3266 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑖)𝐵𝑦
2220, 21nfan 1903 . . . . . . . . . 10 𝑗(((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
23 nfmpt1 5214 . . . . . . . . . . . . . 14 𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
2423nfrn 5908 . . . . . . . . . . . . 13 𝑗ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
25 nfcv 2904 . . . . . . . . . . . . 13 𝑗
26 nfcv 2904 . . . . . . . . . . . . 13 𝑗 <
2724, 25, 26nfsup 9392 . . . . . . . . . . . 12 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
28 nfcv 2904 . . . . . . . . . . . 12 𝑗
29 nfcv 2904 . . . . . . . . . . . 12 𝑗𝑦
3027, 28, 29nfbr 5153 . . . . . . . . . . 11 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦
3130, 29, 27nfif 4517 . . . . . . . . . 10 𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
32 uzub.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3332ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑀 ∈ ℤ)
34 uzub.3 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
35 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑦 ∈ ℝ)
36 eqid 2733 . . . . . . . . . 10 sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
37 eqid 2733 . . . . . . . . . 10 if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
38 simplr 768 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑖𝑍)
39 uzub.12 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
4039ad5ant15 758 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) ∧ 𝑗𝑍) → 𝐵 ∈ ℝ)
41 simpr 486 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
4222, 31, 33, 34, 35, 36, 37, 38, 40, 41uzublem 43751 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4342rexlimdva2 3151 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4443imp 408 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4544rexlimdva2 3151 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4645imp 408 . . . . 5 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4715, 46sylan2 594 . . . 4 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4847ex 414 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4932, 34uzidd2 43737 . . . . . . 7 (𝜑𝑀𝑍)
5049ad2antrr 725 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → 𝑀𝑍)
5134raleqi 3310 . . . . . . . 8 (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5251biimpi 215 . . . . . . 7 (∀𝑗𝑍 𝐵𝑤 → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5352adantl 483 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
54 nfv 1918 . . . . . . 7 𝑖𝑗 ∈ (ℤ𝑀)𝐵𝑤
55 fveq2 6843 . . . . . . . 8 (𝑖 = 𝑀 → (ℤ𝑖) = (ℤ𝑀))
5655raleqdv 3312 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤))
5754, 56rspce 3569 . . . . . 6 ((𝑀𝑍 ∧ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5850, 53, 57syl2anc 585 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5958ex 414 . . . 4 ((𝜑𝑤 ∈ ℝ) → (∀𝑗𝑍 𝐵𝑤 → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6059reximdva 3162 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 → ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6148, 60impbid 211 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
62 breq2 5110 . . . . 5 (𝑤 = 𝑥 → (𝐵𝑤𝐵𝑥))
6362ralbidv 3171 . . . 4 (𝑤 = 𝑥 → (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗𝑍 𝐵𝑥))
6463cbvrexvw 3225 . . 3 (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
6564a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
6610, 61, 653bitrd 305 1 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  wcel 2107  wral 3061  wrex 3070  ifcif 4487   class class class wbr 5106  cmpt 5189  ran crn 5635  cfv 6497  (class class class)co 7358  supcsup 9381  cr 11055   < clt 11194  cle 11195  cz 12504  cuz 12768  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574
This theorem is referenced by:  limsupreuz  44064
  Copyright terms: Public domain W3C validator