Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzub Structured version   Visualization version   GIF version

Theorem uzub 45425
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzub.1 𝑗𝜑
uzub.2 (𝜑𝑀 ∈ ℤ)
uzub.3 𝑍 = (ℤ𝑀)
uzub.12 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
uzub (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem uzub
Dummy variables 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
21raleqdv 3309 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑥))
32cbvrexvw 3225 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥)
43a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥))
5 breq2 5128 . . . . . . 7 (𝑥 = 𝑤 → (𝐵𝑥𝐵𝑤))
65ralbidv 3164 . . . . . 6 (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑤))
76rexbidv 3165 . . . . 5 (𝑥 = 𝑤 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
84, 7bitrd 279 . . . 4 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
98cbvrexvw 3225 . . 3 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
109a1i 11 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
11 breq2 5128 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1211ralbidv 3164 . . . . . . . 8 (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1312rexbidv 3165 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1413cbvrexvw 3225 . . . . . 6 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
1514biimpi 216 . . . . 5 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
16 uzub.1 . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1914 . . . . . . . . . . . . 13 𝑗 𝑦 ∈ ℝ
1816, 17nfan 1899 . . . . . . . . . . . 12 𝑗(𝜑𝑦 ∈ ℝ)
19 nfv 1914 . . . . . . . . . . . 12 𝑗 𝑖𝑍
2018, 19nfan 1899 . . . . . . . . . . 11 𝑗((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍)
21 nfra1 3270 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑖)𝐵𝑦
2220, 21nfan 1899 . . . . . . . . . 10 𝑗(((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
23 nfmpt1 5225 . . . . . . . . . . . . . 14 𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
2423nfrn 5937 . . . . . . . . . . . . 13 𝑗ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
25 nfcv 2899 . . . . . . . . . . . . 13 𝑗
26 nfcv 2899 . . . . . . . . . . . . 13 𝑗 <
2724, 25, 26nfsup 9468 . . . . . . . . . . . 12 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
28 nfcv 2899 . . . . . . . . . . . 12 𝑗
29 nfcv 2899 . . . . . . . . . . . 12 𝑗𝑦
3027, 28, 29nfbr 5171 . . . . . . . . . . 11 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦
3130, 29, 27nfif 4536 . . . . . . . . . 10 𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
32 uzub.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3332ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑀 ∈ ℤ)
34 uzub.3 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
35 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑦 ∈ ℝ)
36 eqid 2736 . . . . . . . . . 10 sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
37 eqid 2736 . . . . . . . . . 10 if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
38 simplr 768 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑖𝑍)
39 uzub.12 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
4039ad5ant15 758 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) ∧ 𝑗𝑍) → 𝐵 ∈ ℝ)
41 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
4222, 31, 33, 34, 35, 36, 37, 38, 40, 41uzublem 45424 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4342rexlimdva2 3144 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4443imp 406 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4544rexlimdva2 3144 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4645imp 406 . . . . 5 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4715, 46sylan2 593 . . . 4 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4847ex 412 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4932, 34uzidd2 45410 . . . . . . 7 (𝜑𝑀𝑍)
5049ad2antrr 726 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → 𝑀𝑍)
5134raleqi 3307 . . . . . . . 8 (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5251biimpi 216 . . . . . . 7 (∀𝑗𝑍 𝐵𝑤 → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5352adantl 481 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
54 nfv 1914 . . . . . . 7 𝑖𝑗 ∈ (ℤ𝑀)𝐵𝑤
55 fveq2 6881 . . . . . . . 8 (𝑖 = 𝑀 → (ℤ𝑖) = (ℤ𝑀))
5655raleqdv 3309 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤))
5754, 56rspce 3595 . . . . . 6 ((𝑀𝑍 ∧ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5850, 53, 57syl2anc 584 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5958ex 412 . . . 4 ((𝜑𝑤 ∈ ℝ) → (∀𝑗𝑍 𝐵𝑤 → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6059reximdva 3154 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 → ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6148, 60impbid 212 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
62 breq2 5128 . . . . 5 (𝑤 = 𝑥 → (𝐵𝑤𝐵𝑥))
6362ralbidv 3164 . . . 4 (𝑤 = 𝑥 → (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗𝑍 𝐵𝑥))
6463cbvrexvw 3225 . . 3 (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
6564a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
6610, 61, 653bitrd 305 1 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3052  wrex 3061  ifcif 4505   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  supcsup 9457  cr 11133   < clt 11274  cle 11275  cz 12593  cuz 12857  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677
This theorem is referenced by:  limsupreuz  45733
  Copyright terms: Public domain W3C validator