Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzub Structured version   Visualization version   GIF version

Theorem uzub 44127
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzub.1 𝑗𝜑
uzub.2 (𝜑𝑀 ∈ ℤ)
uzub.3 𝑍 = (ℤ𝑀)
uzub.12 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
uzub (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem uzub
Dummy variables 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
21raleqdv 3325 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑥))
32cbvrexvw 3235 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥)
43a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥))
5 breq2 5151 . . . . . . 7 (𝑥 = 𝑤 → (𝐵𝑥𝐵𝑤))
65ralbidv 3177 . . . . . 6 (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑤))
76rexbidv 3178 . . . . 5 (𝑥 = 𝑤 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
84, 7bitrd 278 . . . 4 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
98cbvrexvw 3235 . . 3 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
109a1i 11 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
11 breq2 5151 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1211ralbidv 3177 . . . . . . . 8 (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1312rexbidv 3178 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1413cbvrexvw 3235 . . . . . 6 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
1514biimpi 215 . . . . 5 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
16 uzub.1 . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1917 . . . . . . . . . . . . 13 𝑗 𝑦 ∈ ℝ
1816, 17nfan 1902 . . . . . . . . . . . 12 𝑗(𝜑𝑦 ∈ ℝ)
19 nfv 1917 . . . . . . . . . . . 12 𝑗 𝑖𝑍
2018, 19nfan 1902 . . . . . . . . . . 11 𝑗((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍)
21 nfra1 3281 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑖)𝐵𝑦
2220, 21nfan 1902 . . . . . . . . . 10 𝑗(((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
23 nfmpt1 5255 . . . . . . . . . . . . . 14 𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
2423nfrn 5949 . . . . . . . . . . . . 13 𝑗ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
25 nfcv 2903 . . . . . . . . . . . . 13 𝑗
26 nfcv 2903 . . . . . . . . . . . . 13 𝑗 <
2724, 25, 26nfsup 9442 . . . . . . . . . . . 12 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
28 nfcv 2903 . . . . . . . . . . . 12 𝑗
29 nfcv 2903 . . . . . . . . . . . 12 𝑗𝑦
3027, 28, 29nfbr 5194 . . . . . . . . . . 11 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦
3130, 29, 27nfif 4557 . . . . . . . . . 10 𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
32 uzub.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3332ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑀 ∈ ℤ)
34 uzub.3 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
35 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑦 ∈ ℝ)
36 eqid 2732 . . . . . . . . . 10 sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
37 eqid 2732 . . . . . . . . . 10 if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
38 simplr 767 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑖𝑍)
39 uzub.12 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
4039ad5ant15 757 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) ∧ 𝑗𝑍) → 𝐵 ∈ ℝ)
41 simpr 485 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
4222, 31, 33, 34, 35, 36, 37, 38, 40, 41uzublem 44126 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4342rexlimdva2 3157 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4443imp 407 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4544rexlimdva2 3157 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4645imp 407 . . . . 5 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4715, 46sylan2 593 . . . 4 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4847ex 413 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4932, 34uzidd2 44112 . . . . . . 7 (𝜑𝑀𝑍)
5049ad2antrr 724 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → 𝑀𝑍)
5134raleqi 3323 . . . . . . . 8 (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5251biimpi 215 . . . . . . 7 (∀𝑗𝑍 𝐵𝑤 → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5352adantl 482 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
54 nfv 1917 . . . . . . 7 𝑖𝑗 ∈ (ℤ𝑀)𝐵𝑤
55 fveq2 6888 . . . . . . . 8 (𝑖 = 𝑀 → (ℤ𝑖) = (ℤ𝑀))
5655raleqdv 3325 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤))
5754, 56rspce 3601 . . . . . 6 ((𝑀𝑍 ∧ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5850, 53, 57syl2anc 584 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5958ex 413 . . . 4 ((𝜑𝑤 ∈ ℝ) → (∀𝑗𝑍 𝐵𝑤 → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6059reximdva 3168 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 → ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6148, 60impbid 211 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
62 breq2 5151 . . . . 5 (𝑤 = 𝑥 → (𝐵𝑤𝐵𝑥))
6362ralbidv 3177 . . . 4 (𝑤 = 𝑥 → (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗𝑍 𝐵𝑥))
6463cbvrexvw 3235 . . 3 (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
6564a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
6610, 61, 653bitrd 304 1 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3061  wrex 3070  ifcif 4527   class class class wbr 5147  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7405  supcsup 9431  cr 11105   < clt 11244  cle 11245  cz 12554  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624
This theorem is referenced by:  limsupreuz  44439
  Copyright terms: Public domain W3C validator