Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzub Structured version   Visualization version   GIF version

Theorem uzub 44842
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzub.1 𝑗𝜑
uzub.2 (𝜑𝑀 ∈ ℤ)
uzub.3 𝑍 = (ℤ𝑀)
uzub.12 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
uzub (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem uzub
Dummy variables 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6902 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
21raleqdv 3323 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑥))
32cbvrexvw 3233 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥)
43a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥))
5 breq2 5156 . . . . . . 7 (𝑥 = 𝑤 → (𝐵𝑥𝐵𝑤))
65ralbidv 3175 . . . . . 6 (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑤))
76rexbidv 3176 . . . . 5 (𝑥 = 𝑤 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
84, 7bitrd 278 . . . 4 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
98cbvrexvw 3233 . . 3 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
109a1i 11 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
11 breq2 5156 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1211ralbidv 3175 . . . . . . . 8 (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1312rexbidv 3176 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1413cbvrexvw 3233 . . . . . 6 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
1514biimpi 215 . . . . 5 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
16 uzub.1 . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1909 . . . . . . . . . . . . 13 𝑗 𝑦 ∈ ℝ
1816, 17nfan 1894 . . . . . . . . . . . 12 𝑗(𝜑𝑦 ∈ ℝ)
19 nfv 1909 . . . . . . . . . . . 12 𝑗 𝑖𝑍
2018, 19nfan 1894 . . . . . . . . . . 11 𝑗((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍)
21 nfra1 3279 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑖)𝐵𝑦
2220, 21nfan 1894 . . . . . . . . . 10 𝑗(((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
23 nfmpt1 5260 . . . . . . . . . . . . . 14 𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
2423nfrn 5958 . . . . . . . . . . . . 13 𝑗ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
25 nfcv 2899 . . . . . . . . . . . . 13 𝑗
26 nfcv 2899 . . . . . . . . . . . . 13 𝑗 <
2724, 25, 26nfsup 9482 . . . . . . . . . . . 12 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
28 nfcv 2899 . . . . . . . . . . . 12 𝑗
29 nfcv 2899 . . . . . . . . . . . 12 𝑗𝑦
3027, 28, 29nfbr 5199 . . . . . . . . . . 11 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦
3130, 29, 27nfif 4562 . . . . . . . . . 10 𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
32 uzub.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3332ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑀 ∈ ℤ)
34 uzub.3 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
35 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑦 ∈ ℝ)
36 eqid 2728 . . . . . . . . . 10 sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
37 eqid 2728 . . . . . . . . . 10 if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
38 simplr 767 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑖𝑍)
39 uzub.12 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
4039ad5ant15 757 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) ∧ 𝑗𝑍) → 𝐵 ∈ ℝ)
41 simpr 483 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
4222, 31, 33, 34, 35, 36, 37, 38, 40, 41uzublem 44841 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4342rexlimdva2 3154 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4443imp 405 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4544rexlimdva2 3154 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4645imp 405 . . . . 5 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4715, 46sylan2 591 . . . 4 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4847ex 411 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4932, 34uzidd2 44827 . . . . . . 7 (𝜑𝑀𝑍)
5049ad2antrr 724 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → 𝑀𝑍)
5134raleqi 3321 . . . . . . . 8 (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5251biimpi 215 . . . . . . 7 (∀𝑗𝑍 𝐵𝑤 → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5352adantl 480 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
54 nfv 1909 . . . . . . 7 𝑖𝑗 ∈ (ℤ𝑀)𝐵𝑤
55 fveq2 6902 . . . . . . . 8 (𝑖 = 𝑀 → (ℤ𝑖) = (ℤ𝑀))
5655raleqdv 3323 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤))
5754, 56rspce 3600 . . . . . 6 ((𝑀𝑍 ∧ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5850, 53, 57syl2anc 582 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
5958ex 411 . . . 4 ((𝜑𝑤 ∈ ℝ) → (∀𝑗𝑍 𝐵𝑤 → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6059reximdva 3165 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 → ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6148, 60impbid 211 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
62 breq2 5156 . . . . 5 (𝑤 = 𝑥 → (𝐵𝑤𝐵𝑥))
6362ralbidv 3175 . . . 4 (𝑤 = 𝑥 → (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗𝑍 𝐵𝑥))
6463cbvrexvw 3233 . . 3 (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
6564a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
6610, 61, 653bitrd 304 1 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wnf 1777  wcel 2098  wral 3058  wrex 3067  ifcif 4532   class class class wbr 5152  cmpt 5235  ran crn 5683  cfv 6553  (class class class)co 7426  supcsup 9471  cr 11145   < clt 11286  cle 11287  cz 12596  cuz 12860  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668
This theorem is referenced by:  limsupreuz  45154
  Copyright terms: Public domain W3C validator