| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑘 = 𝑖 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑖)) | 
| 2 | 1 | raleqdv 3325 | . . . . . . 7
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) | 
| 3 | 2 | cbvrexvw 3237 | . . . . . 6
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥) | 
| 4 | 3 | a1i 11 | . . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) | 
| 5 |  | breq2 5146 | . . . . . . 7
⊢ (𝑥 = 𝑤 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝑤)) | 
| 6 | 5 | ralbidv 3177 | . . . . . 6
⊢ (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 7 | 6 | rexbidv 3178 | . . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 8 | 4, 7 | bitrd 279 | . . . 4
⊢ (𝑥 = 𝑤 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 9 | 8 | cbvrexvw 3237 | . . 3
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) | 
| 10 | 9 | a1i 11 | . 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 11 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑦)) | 
| 12 | 11 | ralbidv 3177 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) | 
| 13 | 12 | rexbidv 3178 | . . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) | 
| 14 | 13 | cbvrexvw 3237 | . . . . . 6
⊢
(∃𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) | 
| 15 | 14 | biimpi 216 | . . . . 5
⊢
(∃𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑖)𝐵 ≤ 𝑤 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) | 
| 16 |  | uzub.1 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝜑 | 
| 17 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑦 ∈ ℝ | 
| 18 | 16, 17 | nfan 1898 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ℝ) | 
| 19 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑖 ∈ 𝑍 | 
| 20 | 18, 19 | nfan 1898 | . . . . . . . . . . 11
⊢
Ⅎ𝑗((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) | 
| 21 |  | nfra1 3283 | . . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 | 
| 22 | 20, 21 | nfan 1898 | . . . . . . . . . 10
⊢
Ⅎ𝑗(((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) | 
| 23 |  | nfmpt1 5249 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵) | 
| 24 | 23 | nfrn 5962 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵) | 
| 25 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗ℝ | 
| 26 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗
< | 
| 27 | 24, 25, 26 | nfsup 9492 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) | 
| 28 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗
≤ | 
| 29 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑦 | 
| 30 | 27, 28, 29 | nfbr 5189 | . . . . . . . . . . 11
⊢
Ⅎ𝑗sup(ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦 | 
| 31 | 30, 29, 27 | nfif 4555 | . . . . . . . . . 10
⊢
Ⅎ𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) | 
| 32 |  | uzub.2 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 33 | 32 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑀 ∈ ℤ) | 
| 34 |  | uzub.3 | . . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 35 |  | simpllr 775 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑦 ∈ ℝ) | 
| 36 |  | eqid 2736 | . . . . . . . . . 10
⊢ sup(ran
(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) | 
| 37 |  | eqid 2736 | . . . . . . . . . 10
⊢
if(sup(ran (𝑗 ∈
(𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) | 
| 38 |  | simplr 768 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → 𝑖 ∈ 𝑍) | 
| 39 |  | uzub.12 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | 
| 40 | 39 | ad5ant15 758 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | 
| 41 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) | 
| 42 | 22, 31, 33, 34, 35, 36, 37, 38, 40, 41 | uzublem 45446 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) | 
| 43 | 42 | rexlimdva2 3156 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) | 
| 44 | 43 | imp 406 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) | 
| 45 | 44 | rexlimdva2 3156 | . . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) | 
| 46 | 45 | imp 406 | . . . . 5
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) | 
| 47 | 15, 46 | sylan2 593 | . . . 4
⊢ ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) | 
| 48 | 47 | ex 412 | . . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) | 
| 49 | 32, 34 | uzidd2 45432 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝑍) | 
| 50 | 49 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → 𝑀 ∈ 𝑍) | 
| 51 | 34 | raleqi 3323 | . . . . . . . 8
⊢
(∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) | 
| 52 | 51 | biimpi 216 | . . . . . . 7
⊢
(∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 → ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) | 
| 53 | 52 | adantl 481 | . . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) | 
| 54 |  | nfv 1913 | . . . . . . 7
⊢
Ⅎ𝑖∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤 | 
| 55 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑖 = 𝑀 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑀)) | 
| 56 | 55 | raleqdv 3325 | . . . . . . 7
⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤)) | 
| 57 | 54, 56 | rspce 3610 | . . . . . 6
⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)𝐵 ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) | 
| 58 | 50, 53, 57 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤) | 
| 59 | 58 | ex 412 | . . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 → ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 60 | 59 | reximdva 3167 | . . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 → ∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤)) | 
| 61 | 48, 60 | impbid 212 | . 2
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤)) | 
| 62 |  | breq2 5146 | . . . . 5
⊢ (𝑤 = 𝑥 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑥)) | 
| 63 | 62 | ralbidv 3177 | . . . 4
⊢ (𝑤 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) | 
| 64 | 63 | cbvrexvw 3237 | . . 3
⊢
(∃𝑤 ∈
ℝ ∀𝑗 ∈
𝑍 𝐵 ≤ 𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) | 
| 65 | 64 | a1i 11 | . 2
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) | 
| 66 | 10, 61, 65 | 3bitrd 305 | 1
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |